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Preface

This book is intended as a modern physics text for science majors and engi-
neering students who have already completed an introductory calculus-based
physics course. The contents of this text may be subdivided into two broad cat-
egories: an introduction to the theories of relativity, quantum and statistical
physics (Chapters 1 through 10) and applications of elementary quantum the-
ory to molecular, solid-state, nuclear, and particle physics (Chapters 11
through 16).

OBJECTIVES

Our basic objectives in this book are threefold:

1. To provide simple, clear, and mathematically uncomplicated explana-
tions of physical concepts and theories of modern physics.

2. To clarify and show support for these theories through a broad range of
current applications and examples. In this regard, we have attempted to
answer questions such as: What holds molecules together? How do elec-
trons tunnel through barriers? How do electrons move through solids?
How can currents persist indefinitely in superconductors?

3. To enliven and humanize the text with brief sketches of the historical de-
velopment of 20th century physics, including anecdotes and quotations
from the key figures as well as interesting photographs of noted scientists
and original apparatus.

COVERAGE

Topics. The material covered in this book is concerned with fundamental
topics in modern physics with extensive applications in science and engineer-
ing. Chapters 1 and 2 present an introduction to the special theory of relativ-
ity. Chapter 2 also contains an introduction to general relativity. Chapters 3
through 5 present an historical and conceptual introduction to early develop-
ments in quantum theory, including a discussion of key experiments that show
the quantum aspects of nature. Chapters 6 through 9 are an introduction to
the real “nuts and bolts” of quantum mechanics, covering the Schroédinger
equation, tunneling phenomena, the hydrogen atom, and multielectron
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atoms, while Chapter 10 contains an introduction to statistical physics. The re-
mainder of the book consists mainly of applications of the theory set forth in
earlier chapters to more specialized areas of modern physics. In particular,
Chapter 11 discusses the physics of molecules, while Chapter 12 is an introduc-
tion to the physics of solids and electronic devices. Chapters 13 and 14 cover
nuclear physics, methods of obtaining energy from nuclear reactions,
and medical and other applications of nuclear processes. Chapter 15 treats
elementary particle physics, and Chapter 16 (available online at http://info.
brookscole.com/mp3e) covers cosmology.

CHANGES TO THE THIRD EDITION

The third edition contains two major changes from the second edition: First,
this edition has been extensively rewritten in order to clarify difficult concepts,
aid understanding, and bring the text up to date with rapidly developing tech-
nical applications of quantum physics. Artwork and the order of presentation
of certain topics have been revised to help in this process. (Many new photos
of physicists have been added to the text, and a new collection of color pho-
tographs of modern physics phenomena is also available on the Book Com-
panion Web Site.) Typically, each chapter contains new worked examples and
five new end-of-chapter questions and problems. Finally, the Suggestions for Fur-
ther Reading have been revised as needed.

Second, this edition refers the reader to a new, online (platform indepen-
dent) simulation package, QM7Tools, developed by one of the authors, Curt
Moyer. We think these simulations clarify, enliven, and complement the analyt-
ical solutions presented in the text. Icons in the text highlight the problems
designed for use with this software, which provides modeling tools to help stu-
dents visualize abstract concepts. All instructions about the general use of the
software as well as specific instructions for each problem are contained on the
Book Companion Web Site, thereby minimizing interruptions to the logical
flow of the text. The Book Companion Web Site at http://info.brookscole.
mp3e also contains appendices and much supplemental information on cur-
rent physics research and applications, allowing interested readers to dig
deeper into many topics.

Specific changes by chapter in this third edition are as follows:

o Chapter 1 in the previous editions, “Relativity,” has been extensively revised
and divided into two chapters. The new Chapter 1, entitled “Relativity 1,
contains the history of relativity, new derivations of the Lorentz coordinate
and velocity transformations, and a new section on spacetime and causality.

» Chapter 2, entitled “Relativity II,” covers relativistic dynamics and energy
and includes new material on general relativity, gravitational radiation,
and the applications GPS (Global Positioning System) and LIGO (the
Laser Interferometer Gravitational-wave Observatory).

e Chapter 3 has been streamlined with a more concise treatment of the
Rayleigh-Jeans and Planck blackbody laws. Material necessary for a com-
plete derivation of these results has been placed on our Book Companion
Web Site.

o Chapter 5 contains a new section on the invention and principles of op-
eration of transmission and scanning electron microscopes.
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e Chapter 6, “Quantum Mechanics in One Dimension,” features a new
application on the principles of operation and utility of CCDs (Charge-
Coupled Devices).

e Chapter 8, “Quantum Mechanics in Three Dimensions,” includes a new
discussion on the production and spectroscopic study of anti-hydrogen, a
study which has important consequences for several fundamental physical
questions.

e Chapter 10 presents new material on the connection of wavefunction
symmetry to the Bose-Einstein condensation and the Pauli exclusion prin-
ciple, as well as describing potential applications of Bose-Einstein conden-
sates.

e Chapter 11 contains new material explaining Raman scattering, fluores-
cence, and phosphorescence, as well as giving applications of these
processes to pollution detection and biomedical research. This chapter
has also been streamlined with the discussion of overlap integrals being
moved to the Book Companion Web Site.

e Chapter 12 has been carefully revised for clarification and features new
material on semiconductor devices, in particular MOSFETs and chips. In
addition, the most important facts about superconductivity have been
summarized, updated, and included in Chapter 12. For those desiring
more material on superconductivity, the entire superconductivity chapter
from previous editions is available at the Book Companion Web Site
along with essays on the history of the laser and solar cells.

e Chapter 13 contains new material on MRI (Magnetic Resonance Imag-
ing) and an interesting history of the determination of the age of the
Earth.

o Chapter 14 presents updated sections on fission reactor safety and waste
disposal, fusion reactor results, and applications of nuclear physics to
tracing, neutron activation analysis, radiation therapy, and other areas.

e Chapter 15 has been extensively rewritten in an attempt to convey the
thrust toward unification in particle physics. By way of achieving this goal,
new discussions of positrons, neutrino mass and oscillation, conservation
laws, and grand unified theories, including supersymmetry and string the-
ory, have been introduced.

e Chapter 16 is a new chapter devoted exclusively to the exciting topic of
the origin and evolution of the universe. Topics covered include the dis-
covery of the expanding universe, primordial radiation, inflation, the fu-
ture evolution of the universe, dark matter, dark energy, and the acceler-
ating expansion of the universe. This cosmology chapter is available on
our Book Companion Web Site.

FEATURES OF THIS TEXT

QMTools Five chapters contain several new problems requiring the use of
our simulation software, QM7Tools. QMTools is a sophisticated interactive learn-
ing tool with considerable flexibility and scope. Using QM7ools, students can
compose matter-wave packets and study their time evolution, find stationary
state energies and wavefunctions, and determine the probability for particle
transmission and reflection from nearly any potential well or barrier. Access to
QMTools is available online at http://info.brookscole.com/mp3e.
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Style. We have attempted to write this book in a style that is clear and suc-
cinct yet somewhat informal, in the hope that readers will find the text appeal-
ing and enjoyable to read. All new terms have been carefully defined, and we
have tried to avoid jargon.

Worked Examples. A large number of worked examples of varying difficulty
are presented as an aid in understanding both concepts and the chain of rea-
soning needed to solve realistic problems. In many cases, these examples will
serve as models for solving some end-of-chapter problems. The examples are
set off with colored bars for ease of location, and most examples are given ti-
tles to describe their content.

Exercises Following Examples. As an added feature, many of the worked
examples are followed immediately by exercises with answers. These exercises
are intended to make the textbook more interactive with the student, and
to test immediately the student’s understanding of key concepts and problem-
solving techniques. The exercises represent extensions of the worked examples
and are numbered in case the instructor wishes to assign them for homework.

Problems and Questions. An extensive set of questions and problems is in-
cluded at the end of each chapter. Most of the problems are listed by section
topic. Answers to all odd-numbered problems are given at the end of the
book. Problems span a range of difficulty and more challenging problems
have colored numbers. Most of the questions serve to test the student’s under-
standing of the concepts presented in a given chapter, and many can be used
to motivate classroom discussions.

Units. The international system of units (SI) is used throughout the text.
Occasionally, where common usage dictates, other units are used (such as the
angstrom, A, and cm™!, commonly used by spectroscopists), but all such units
are carefully defined in terms of SI units.

Chapter Format. FEach chapter begins with a preview, which includes a brief
discussion of chapter objectives and content. Marginal notes set in color are used
to locate important concepts and equations in the text. Important statements are
italicized or highlighted, and important equations are set in a colored box for
added emphasis and ease of review. Each chapter concludes with a summary,
which reviews the important concepts and equations discussed in that chapter.

In addition, many chapters contain special topic sections which are clearly
marked optional. These sections expose the student to slightly more advanced
material either in the form of current interesting discoveries or as fuller devel-
opments of concepts or calculations discussed in that chapter. Many of these
special topic sections will be of particular interest to certain student groups
such as chemistry majors, electrical engineers, and physics majors.

Guest Essays. Another feature of this text is the inclusion of interesting ma-
terial in the form of essays by guest authors. These essays cover a wide range of
topics and are intended to convey an insider’s view of exciting current devel-
opments in modern physics. Furthermore, the essay topics present extensions
and/or applications of the material discussed in specific chapters. Some of the
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essay topics covered are recent developments in general relativity, the scan-
ning tunneling microscope, superconducting devices, the history of the laser,
laser cooling of atoms, solar cells, and how the top quark was detected. The
guest essays are either included in the text or referenced as being on our Web
site at appropriate points in the text.

Mathematical Level. Students using this text should have completed a com-
prehensive one-year calculus course, as calculus is used throughout the text.
However, we have made an attempt to keep physical ideas foremost so as not to
obscure our presentations with overly elegant mathematics. Most steps are shown
when basic equations are developed, but exceptionally long and detailed proofs
which interrupt the flow of physical arguments have been placed in appendices.

Appendices and Endpapers. The appendices in this text serve several pur-
poses. Lengthy derivations of important results needed in physical discussions
have been placed on our Web site to avoid interrupting the main flow of argu-
ments. Other appendices needed for quick reference are located at the end of
the book. These contain physical constants, a table of atomic masses, and a list
of Nobel prize winners. The endpapers inside the front cover of the book con-
tain important physical constants and standard abbreviations of units used in
the book, and conversion factors for quick reference, while a periodic table is
included in the rear cover endpapers.

Ancillaries. The ancillaries available with this text include a Student Solu-
tions Manual, which has solutions to all odd-numbered problems in the book,
an Instructor’s Solutions Manual, consisting of solutions to all problems in the
text, and a Multimedia Manager, a CD-ROM lecture tool that contains digital
versions of all art and selected photographs in the text.

TEACHING OPTIONS

As noted earlier, the text may be subdivided into two basic parts: Chapters 1
through 10, which contain an introduction to relativity, quantum physics, and
statistical physics, and Chapters 11 through 16, which treat applications to
molecules, the solid state, nuclear physics, elementary particles, and cosmol-
ogy. It is suggested that the first part of the book be covered sequentially. How-
ever, the relativity chapters may actually be covered at any time because E? =
p?c® + m?ct is the only formula from these chapters which is essential for sub-
sequent chapters. Chapters 11 through 16 are independent of one another
and can be covered in any order with one exception: Chapter 14, “Nuclear
Physics Applications,” should follow Chapter 13, “Nuclear Structure.”

A traditional sophomore or junior level modern physics course for science,
mathematics, and engineering students should cover most of Chapters 1
through 10 and several of the remaining chapters, depending on the student
major. For example, an audience consisting mainly of electrical engineering stu-
dents might cover most of Chapters 1 through 10 with particular emphasis on
tunneling and tunneling devices in Chapter 7, the Fermi-Dirac distribution in
Chapter 10, semiconductors in Chapter 12, and radiation detectors in Chapter
14. Chemistry and chemical engineering majors could cover most of Chapters 1
through 10 with special emphasis on atoms in Chapter 9, classical and quantum
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statistics in Chapter 10, and molecular bonding and spectroscopy in Chapter 11.
Mathematics and physics majors should pay special attention to the unique de-
velopment of operator methods and the concept of sharp and fuzzy observables
introduced in Chapter 6. The deep connection of sharp observables with classi-
cally conserved quantities and the powerful role of sharp observables in shaping
the form of system wavefunctions is developed more fully in Chapter 8.

Our experience has shown that there is more material contained in this
book than can be covered in a standard one semester three-credit-hour
course. For this reason, one has to “pick-and-choose” from topics in the sec-
ond part of the book as noted earlier. However, the text can also be used in a
two-semester sequence with some supplemental material, such as one of many
monographs on relativity, and/or selected readings in the areas of solid state,
nuclear, and elementary particle physics. Some selected readings are sug-
gested at the end of each chapter.

ACKNOWLEDGMENTS

We wish to thank the users and reviewers of the first and second editions who
generously shared with us their comments and criticisms. In preparing this
third edition we owe a special debt of gratitude to the following reviewers:

Melissa Franklin, Harvard University

Edward F. Gibson, California State University, Sacramento

Grant Hart, Brigham Young University

James Hetrick, University of the Pacific

Andres H. La Rosa, Portland State University

Pui-tak (Peter) Leung, Portland State University

Peter Moeck, Portland State University

Timothy S. Sullivan, Kenyon College

William R. Wharton, Wheaton College

We thank the professional staff at Brooks-Cole Publishing for their fine work
during the development and production of this text, especially Jay Campbell,
Chris Hall, Teri Hyde, Seth Dobrin, Sam Subity, Kelley McAllister, Stacey
Purviance, Susan Dust Pashos, and Dena Digilio-Betz. We thank Suzon O.
Kister for her helpful reference work, and all the authors of our guest essays:
Steven Chu, Melissa Franklin, Roger A. Freedman, Clark A. Hamilton, Paul K.

Hansma, David Kestenbaum, Sam Marshall, John Meakin, and Clifford M. Will.
Finally, we thank all of our families for their patience and continual support.

Raymond A. Serway
Leesburg, VA 20176

Clement J. Moses
Durham, NC 27713

Curt A. Moyer
Wilmington, NC 28403

December 2003

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.

PREFACE

ix



Contents Overview

1 Relativity I 1
2 Relativity IT 41
3 The Quantum Theory of Light 65
4 The Particle Nature of Matter 106
5 Matter Waves 151
6 Quantum Mechanics in One Dimension 191
7 Tunneling Phenomena 231
8 Quantum Mechanics in Three Dimensions 260
9 Atomic Structure 295
10 Statistical Physics 334
11 Molecular Structure 372
12 The Solid State 404
13 Nuclear Structure 463
14 Nuclear Physics Applications 503
15 Elementary Particles 547

16 Cosmology (Web Only)

Appendix A Best Known Values for Physical Constants A.l
Appendix B Table of Selected Atomic Masses A.2
Appendix C Nobel Prizes A.7

Answers to Odd-Numbered Problems A.12

Index I.1

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.



Contents

1 RELATIVITYI 1

1.1  Special Relativity 2
1.2 The Principle of Relativity 3
The Speed of Light 6
1.3 The Michelson—Morley Experiment 7
Details of the Michelson—Morley
Experiment 8
1.4 Postulates of Special Relativity 10
1.5 Consequences of Special Relativity 13
Simultaneity and the Relativity of Time 14
Time Dilation 15
Length Contraction 18
The Twins Paradox (Optional) 21
The Relativistic Doppler Shift 22
1.6  The Lorentz Transformation 25
Lorentz Velocity Transformation 29
1.7 Spacetime and Causality 31
Summary 35
2 RELATIVITYII 41
2.1 Relativistic Momentum and
the Relativistic Form
of Newton’s Laws 41
2.2 Relativistic Energy 44
2.3 Mass as a Measure of Energy 48
2.4 Conservation of Relativistic
Momentum and Energy 52
2.5 General Relativity 53
Gravitational Radiation, or a Good Wave
Is Hard to Find 56
Summary 59
Web Essay The Renaissance of General Relativity

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.

Clifford M. Will

3 THE QUANTUM THEORY
OF LIGHT 65

3.1 Hertz’s Experiments—Light as an
Electromagnetic Wave 66

3.2 Blackbody Radiation 68
Enter Planck 72
The Quantum of Energy 74

3.3 The Rayleigh—Jeans Law and Planck’s
Law (Optional) 77
Rayleigh—Jeans Law 77
Planck’s Law 79

3.4  Light Quantization and the Photoelectric
Effect 80

3.5 The Compton Effect and X-Rays 86
X-Rays 86
The Compton Effect 89

3.6 Particle—Wave Complementarity 94

3.7  Does Gravity Affect Light? (Optional) 95

Summary 98

Web Appendix Calculation of the Number of Modes

4.1
4.2

4.3

of Waves in a Cavity
Planck’s Calculation of the Average
Energy of an Oscillator

4 THE PARTICLE NATURE
OF MATTER 106

The Atomic Nature of Matter 106
The Composition of Atoms 108

Millikan’s Value of the Elementary Charge 113
Rutherford’s Model of the Atom 119

The Bohr Atom 125

Spectral Series 126
Bohr’s Quantum Model of the Atom 130



xii CONTENTS
4.4  Bohr’s Correspondence Principle,
or Why Is Angular Momentum
Quantized? 139
4.5 Direct Confirmation of Atomic Energy
Levels: The Franck—Hertz Experiment 141
Summary 143
5 MATTER WAVES 151
5.1  The Pilot Waves of De Broglie 152
De Broglie’s Explanation of
Quantization in the Bohr Model 153
5.2 The Davisson—-Germer Experiment 154
The Electron Microscope 159
5.3 Wave Groups and Dispersion 164
Matter Wave Packets 169
5.4 Fourier Integrals (Optional) 170
Constructing Moving Wave Packets 173
5.5  The Heisenberg Uncertainty Principle 173
A Different View of the Uncertainty Principle 175
5.6 If Electrons Are Waves, What’s
Waving? 178
5.7  The Wave—Particle Duality 179
The Description of Electron
Diffraction in Terms of ¥ 179
A Thought Experiment: Measuring
Through Which Slit the Electron Passes 184
5.8  AFinal Note 186
Summary 186
6 QUANTUM MECHANICS IN
ONE DIMENSION 191
6.1 The Born Interpretation 191
6.2  Wavefunction for a Free Particle 194
6.3  Wavefunctions in the Presence
of Forces 197
6.4  The Particle in a Box 200
Charge-Coupled Devices (CCDs) 205
6.5  The Finite Square Well (Optional) 209
6.6  The Quantum Oscillator 212
6.7  Expectation Values 217
6.8  Observables and Operators 221
Quantum Uncertainty and the Eigenvalue Property
(Optional) 222
Summary 224

7.1
7.2

7 TUNNELING PHENOMENA 231

The Square Barrier 231
Barrier Penetration: Some
Applications 238

Field Emission 239

a Decay 242

Ammonia Inversion 245
Decay of Black Holes 247

Summary 248

Essay

8.1
8.2

8.3
8.4

8.5

8.6

The Scanning Tunneling Microscope
Roger A. Freedman and Paul K. Hansma 253

8 QUANTUM MECHANICS IN
THREE DIMENSIONS 260

Particle in a Three-Dimensional Box 260
Central Forces and Angular

Momentum 266

Space Quantization 271

Quantization of Angular Momentum and
Energy (Optional) 273

L, Is Sharp: The Magnetic Quantum Number 275
|L| Is Sharp: The Orbital Quantum Number 276
ETs Sharp: The Radial Wave Equation 276
Atomic Hydrogen and Hydrogen-like

Ions 277

The Ground State of Hydrogen-like Atoms 282
Excited States of Hydrogen-like Atoms 284

Antihydrogen 287

Summary 289

9.1

9.2
9.3

9.4

9.5

9.6
9.7

9 ATOMIC STRUCTURE 295

Orbital Magnetism and the

Normal Zeeman Effect 296

The Spinning Electron 302

The Spin—Orbit Interaction and
Other Magnetic Effects 309
Exchange Symmetry and the
Exclusion Principle 312

Electron Interactions and Screening
Effects (Optional) 316

The Periodic Table 319

X-Ray Spectra and Moseley’s Law 325

Summary 328

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.



10.1

10.2

10.3

10.4

10.5

10 STATISTICAL PHYSICS 334

The Maxwell—Boltzmann Distribution 335

The Maxwell Speed Distribution for
Gas Molecules in Thermal Equilibrium at
Temperature 7" 341

The Equipartition of Energy 343

Under What Physical Conditions Are

Maxwell—Boltzmann Statistics

Applicable? 344

Quantum Statistics 346

Wavefunctions and the Bose —Einstein
Condensation and Pauli Exclusion
Principle 346

Bose—Einstein and Fermi-Dirac
Distributions 347

Applications of Bose—Einstein

Statistics 351

Blackbody Radiation 351
Einstein’s Theory of Specific Heat 352

An Application of Fermi-Dirac Statistics:

The Free-Electron Gas Theory
of Metals 356

Summary 360

Essay

11.2

11.3
11.4

11.5

Laser Manipulation of Atoms
Steven Chu 366

11 MOLECULAR
STRUCTURE 372

Bonding Mechanisms: A Survey 373

Ionic Bonds 374
Covalent Bonds 374

van der Waals Bonds 375
The Hydrogen Bond 377

Molecular Rotation and Vibration 377

Molecular Rotation 378
Molecular Vibration 381

Molecular Spectra 385
Electron Sharing and the
Covalent Bond 390

The Hydrogen Molecular Ion 390
The Hydrogen Molecule 396

Bonding in Complex Molecules
(Optional) 397

Summary 399
Web Appendix  Overlap Integrals of Atomic

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.

Wavefunctions

12.1

12.2

12.3

12.4

12.5

12.6
12.7

CONTENTS

12 THE SOLID STATE 404

Bonding in Solids 405

Tonic Solids 405

Covalent Solids 408

Metallic Solids 409

Molecular Crystals 409
Amorphous Solids 410
Classical Free Electron Model
of Metals 413

Ohm’s Law 414
Classical Free Electron Theory

of Heat Conduction 418
Quantum Theory of Metals 420

Replacement of v,,,, with vp 421
Wiedemann-Franz Law Revisited 422
Quantum Mean Free Path of Electrons 423

Band Theory of Solids 425

Isolated-Atom Approach to Band Theory 425

Conduction in Metals, Insulators, and
Semiconductors 426

Energy Bands from Electron Wave Reflections

Semiconductor Devices 433

The p-nJunction 433

Light-Emitting and -Absorbing
Diodes—LEDs and Solar Cells 436

The Junction Transistor 437

The Field-Effect Transistor (FET) 439

The Integrated Circuit 441

Superconductivity 443

Lasers 447

Absorption, Spontaneous Emission,

and Stimulated Emission 447
Population Inversion and Laser Action 449
Semiconductor Lasers 451

Summary 454
Web Essay The Invention of the Laser

S. A. Marshall

Web Essay Photovoltaic Conversion

John D. Meakin

Web Chapter Superconductivity

13.1

429

13 NUCLEAR STRUCTURE 463

Some Properties of Nuclei 464

Charge and Mass 465

Size and Structure of Nuclei 466

Nuclear Stability 468

Nuclear Spin and Magnetic Moment 469

Nuclear Magnetic Resonance and Magnetic
Resonance Imaging 470



xiv

13.2
13.3

13.4
13.5

13.6

CONTENTS

Binding Energy and Nuclear Forces 472
Nuclear Models 476
Liquid-Drop Model 476
Independent-Particle Model 478
Collective Model 479
Radioactivity 479

Decay Processes 484

Alpha Decay 484

Beta Decay 487

Carbon Dating 489

Gamma Decay 491

Natural Radioactivity 492

Four Radioactive Series 492
Determining the Age of the Earth 493

Summary 495

14.1
14.2
14.3
14.4
14.5

14.6

14.7

14.8
14.9
14.10

14 NUCLEAR PHYSICS
APPLICATIONS 503

Nuclear Reactions 503

Reaction Cross Section 506
Interactions Involving Neutrons 508
Nuclear Fission 510

Nuclear Reactors 513

Neutron Leakage 515

Regulating Neutron Energies 515
Neutron Capture 515

Control of Power Level 515
Safety and Waste Disposal 516
Nuclear Fusion 517

Fusion Reactions 518

Magnetic Field Confinement 521
Inertial Confinement 523

Fusion Reactor Design 524
Advantages and Problems of Fusion 526

Interaction of Particles with Matter 526
Heavy Charged Particles 526

Electrons 528
Photons 528

Radiation Damage in Matter 530
Radiation Detectors 532
Uses of Radiation 536

Tracing 536

Neutron Activation Analysis 537
Radiation Therapy 538

Food Preservation 539

Summary 539

15.1
15.2

15 ELEMENTARY PARTICLES 547

The Fundamental Forces in Nature 548
Positrons and Other Antiparticles 550

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.

15.3

15.4

15.5

15.6
15.7

15.8
15.9

15.10

15.11

15.12

Mesons and the Beginning of
Particle Physics 553
Classification of Particles 556

Hadrons 556

Leptons 557

The Solar Neutrino Mystery and
Neutrino Oscillations 558

Conservation Laws 559

Baryon Number 560
Lepton Number 560

Strange Particles and Strangeness 561
How Are Elementary Particles Produced
and Particle Properties Measured? 563

Resonance Particles 564
Energy Considerations in Particle Production 568

The Eightfold Way 571
Quarks 574

The Original Quark Model 574
Charm and Other Developments 575

Colored Quarks, or Quantum
Chromodynamics 577

Experimental Evidence for Quarks 578
Explanation of Nuclear Force in Terms
of Quarks 579

Electroweak Theory and the
Standard Model 580
Beyond the Standard Model 582

Grand Unification Theory and Supersymmetry 582
String Theory—A New Perspective 582

Summary 583

Lssay

APPENDIX A

APPENDIX B

APPENDIX C

How to Find a Top Quark 590
Melissa Franklin and David Kestenbaum

16 COSMOLOGY (Web Only)

BEST KNOWN VALUES
FOR PHYSICAL
CONSTANTS A.l1

TABLE OF SELECTED
ATOMIC MASSES A.2

NOBEL PRIZES A.7

ANSWERS TO ODD-NUMBERED
PROBLEMS A.12

INDEX I.1



OM Tools

Text References to the Software

Chapter 6
Section 6.2, after Example 6.4
Exercise 3, following Example 6.8

Problems 22, 27, 36

Chapter 7

Exercise 1, following Example 7.1

Section 7.2, after Example 7.6

Subsection on Ammonia Inversion in Section 7.2

Problems 8, 9, 10, 19, 20

Chapter 8
Problems 27, 28, 32, 33

Chapter 9
Problems 19, 20

Chapter 11
Subsection on The Hydrogen Molecular Ion in Section 11.4

Problems 16, 17, 22, 23

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.

XV



1. A. Piccard 11. L. Brillouin 21.1. Langmuir

2.E. Henriot 12. P. Debye 22. M. Planck
3.P. Ehrenfest 13. M. Knudsen  23. M. Curie
4.E. Herzen 14 W.L. Bragg 24. H.A. Lorentz

5.Th. de Donder 15.H.A. Kramers 25. A. Einstein

6.E. Schroedinger 16.P.A.M. Dirac  26. P. Langevin
*"Tﬁ‘ 7.E. Verschaffelt  17.A.H. Compton 27. C.E. Guye

8. W. Pauli 18.L.V. de Broglie 28. C.T.R. Wilson
9.W. Heisenberg  19.M. Born 29. O.W. Richardson
10. R.H. Fowler 20.N. Bohr

¥

sf: )

;/‘
<~

The “architects” of modern physics. This unique photograph shows many eminent
scientists who participated in the Fifth International Congress of Physics held in 1927
by the Solvay Institute in Brussels. At this and similar conferences, held regularly from
1911 on, scientists were able to discuss and share the many dramatic developments

in atomic and nuclear physics. This elite company of scientists includes fifteen Nobel
prize winners in physics and three in chemistry. (Photograph courtesy of AIP Niels Bohr
Library)
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Chapter Outline
1.1 Special Relativity Simultaneity and the Relativity of Time
1.2 The Principle of Relativity Time Dilation
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1.5 Consequences of Special Relativity Summary

At the end of the 19th century, scientists believed that they had learned
most of what there was to know about physics. Newton’s laws of motion and
his universal theory of gravitation, Maxwell’s theoretical work in unifying
electricity and magnetism, and the laws of thermodynamics and kinetic the-
ory employed mathematical methods to successfully explain a wide variety of
phenomena.

However, at the turn of the 20th century, a major revolution shook the
world of physics. In 1900 Planck provided the basic ideas that led to the quan-
tum theory, and in 1905 Einstein formulated his special theory of relativity.
The excitement of the times is captured in Einstein’s own words: “It was a mar-
velous time to be alive.” Both ideas were to have a profound effect on our
understanding of nature. Within a few decades, these theories inspired new
developments and theories in the fields of atomic, nuclear, and condensed-
matter physics.

Although modern physics has led to a multitude of important technological
achievements, the story is still incomplete. Discoveries will continue to be
made during our lifetime, many of which will deepen or refine our under-
standing of nature and the world around us. It is still a “marvelous time to
be alive.”
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CHAPTER 1 RELATIVITY I

1.1 SPECIAL RELATIVITY

Light waves and other forms of electromagnetic radiation travel through free
space at the speed ¢ = 3.00 X 10® m/s. As we shall see in this chapter, the
speed of light sets an upper limit for the speeds of particles, waves, and the
transmission of information.

Most of our everyday experiences deal with objects that move at speeds
much less than that of light. Newtonian mechanics and early ideas on space
and time were formulated to describe the motion of such objects, and this
formalism is very successful in describing a wide range of phenomena. Al-
though Newtonian mechanics works very well at low speeds, it fails when ap-
plied to particles whose speeds approach that of light. Experimentally, one
can test the predictions of Newtonian theory at high speeds by accelerating
an electron through a large electric potential difference. For example, it is
possible to accelerate an electron to a speed of 0.99¢ by using a potential
difference of several million volts. According to Newtonian mechanics, if
the potential difference (as well as the corresponding energy) is increased
by a factor of 4, then the speed of the electron should be doubled to 1.98c.
However, experiments show that the speed of the electron—as well as the
speeds of all other particles in the universe —always remains less than the
speed of light, regardless of the size of the accelerating voltage. In part be-
cause it places no upper limit on the speed that a particle can attain, New-
tonian mechanics is contrary to modern experimental results and is there-
fore clearly a limited theory.

In 1905, at the age of 26, Albert Einstein published his special theory of rela-
tivity. Regarding the theory, Einstein wrote,

The relativity theory arose from necessity, from serious and deep contradictions in

the old theory from which there seemed no escape. The strength of the new theory

lies in the consistency and simplicity with which it solves all these difficulties, using
only a few very convincing assumptions. . . .!

Although Einstein made many important contributions to science, the theory
of relativity alone represents one of the greatest intellectual achievements of
the 20th century. With this theory, one can correctly predict experimental ob-
servations over the range of speeds from rest to speeds approaching the speed
of light. Newtonian mechanics, which was accepted for over 200 years, is in
fact a limiting case of Einstein’s special theory of relativity. This chapter and
the next give an introduction to the special theory of relativity, which deals
with the analysis of physical events from coordinate systems moving with con-
stant speed in straight lines with respect to one another. Chapter 2 also in-
cludes a short introduction to general relativity, which describes physical
events from coordinate systems undergoing general or accelerated motion
with respect to each other.

In this chapter we show that the special theory of relativity follows from two
basic postulates:

1. The laws of physics are the same in all reference systems that move
uniformly with respect to one another. That is, basic laws such as

IA. Einstein and L. Infeld, The Evolution of Physics, New York, Simon and Schuster, 1961.
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1.2 THE PRINCIPLE OF RELATIVITY

2F = dp/dt have the same mathematical form for all observers moving
at constant velocity with respect to one another.

2. The speed of light in vacuum is always measured to be 3 X 108 m/s, and
the measured value is independent of the motion of the observer or of
the motion of the source of light. That is, the speed of light is the same
for all observers moving at constant velocities.

Although it is well known that relativity plays an essential role in theoretical
physics, it also has practical applications, for example, in the design of particle
accelerators, global positioning system (GPS) units, and high-voltage TV dis-
plays. Note that these devices simply will not work if designed according to
Newtonian mechanics! We shall have occasion to use the outcomes of relativity
in many subsequent topics in this text.

1.2 THE PRINCIPLE OF RELATIVITY

To describe a physical event, it is necessary to establish a frame of reference,
such as one that is fixed in the laboratory. Recall from your studies in mechan-
ics that Newton’s laws are valid in inertial frames of reference. An inertial frame
is one i which an object subjected to no forces moves in a straight line at constant
speed— thus the name “inertial frame” because an object observed from such a
frame obeys Newton’s first law, the law of inertia.? Furthermore, any frame or
system moving with constant velocity with respect to an inertial system must
also be an inertial system. Thus there is no single, preferred inertial frame for
applying Newton’s laws.

According to the principle of Newtonian relativity, the laws of mechanics
must be the same in all inertial frames of reference. For example, if you per-
form an experiment while at rest in a laboratory, and an observer in a passing
truck moving with constant velocity performs the same experiment, Newton’s
laws may be applied to both sets of observations. Specifically, in the laboratory
or in the truck a ball thrown up rises and returns to the thrower’s hand. More-
over, both events are measured to take the same time in the truck or in the
laboratory, and Newton’s second law may be used in both frames to compute
this time. Although these experiments look different to different observers
(see Fig. 1.1, in which the Earth observer sees a different path for the ball)
and the observers measure different values of position and velocity for the ball
at the same times, both observers agree on the validity of Newton’s laws and
principles such as conservation of energy and conservation of momentum.
This implies that no experiment involving mechanics can detect any essential
difference between the two inertial frames. The only thing that can be
detected is the relative motion of one frame with respect to the other. That is,
the notion of absolute motion through space is meaningless, as is the notion of
a single, preferred reference frame. Indeed, one of the firm philosophical
principles of modern science is that all observers are equivalent and
that the laws of nature must take the same mathematical form for all
observers. Laws of physics that exhibit the same mathematical form for
observers with different motions at different locations are said to be covariant.
Later in this section we will give specific examples of covariant physical laws.

2An example of a noninertial frame is a frame that accelerates in a straight line or rotates with re-
spect to an inertial frame.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.

Inertial frame of reference

3



4 CHAPTER 1 RELATIVITY I

(a)
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Figure 1.2 An event occurs at
a point P. The event is observed
by two observers in inertial
frames S and S’, in which S’
moves with a velocity v relative
to S.

Galilean transformation of
coordinates

(b)

Figure 1.1 The observer in the truck sees the ball move in a vertical path when
thrown upward. (b) The Earth observer views the path of the ball as a parabola.

In order to show the underlying equivalence of measurements made in dif-
ferent reference frames and hence the equivalence of different frames for do-
ing physics, we need a mathematical formula that systematically relates mea-
surements made in one reference frame to those in another. Such a relation
is called a transformation, and the one satistying Newtonian relativity is the so-
called Galilean transformation, which owes its origin to Galileo. It can be
derived as follows.

Consider two inertial systems or frames S and S', as in Figure 1.2. The
frame S" moves with a constant velocity v along the xx’ axes, where v is mea-
sured relative to the frame S. Clocks in S and S’ are synchronized, and the
origins of S and S’ coincide at ¢t = ¢" = 0. We assume that a point event, a phys-
ical phenomenon such as a lightbulb flash, occurs at the point P. An observer
in the system S would describe the event with space—time coordinates (x, y, z,
1), whereas an observer in S’ would use (', y', 2/, ¢') to describe the same
event. As we can see from Figure 1.2, these coordinates are related by
the equations

X =x— vt

> (1.1)
74 =g
/=t

These equations constitute what is known as a Galilean transformation of
coordinates. Note that the fourth coordinate, time, is assumed to be the
same in both inertial frames. That is, in classical mechanics, all clocks run at the
same rate regardless of their velocity, so that the time at which an event occurs
for an observer in S is the same as the time for the same event in S’. Conse-
quently, the time interval between two successive events should be the same

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.



1.2 THE PRINCIPLE OF RELATIVITY

for both observers. Although this assumption may seem obvious, it turns out
to be incorrect when treating situations in which v is comparable to the
speed of light. In fact, this point represents one of the most profound
differences between Newtonian concepts and the ideas contained in
Einstein’s theory of relativity.

Exercise 1 Show that although observers in S and S’ measure different coordinates
for the ends of a stick at rest in S, they agree on the length of the stick. Assume the stick
has end coordinates x = aand x = a + [ in S and use the Galilean transformation.

An immediate and important consequence of the invariance of the distance
between two points under the Galilean transformation is the invariance of

. k . .
force. For example if F= (#Q)Q gives the electric force between two
X9 — Xq
charges ¢,Q located at x; and x9 on the xaxis in frame S, F’, the force mea-
. L k .
sured in §', is given by I’ = %Q,)Q = F'since x5 — x] = x9 — x7. In fact
X2 T X

any force would be invariant under the Galilean transformation as long as it
involved only the relative positions of interacting particles.

Now suppose two events are separated by a distance dx and a time interval
dt as measured by an observer in S. It follows from Equation 1.1 that the
corresponding displacement dx’ measured by an observer in S’ is given by
dx' = dx — v dt, where dx is the displacement measured by an observer in S.
Because dt = dt’, we find that

dv _ dv
dt’ a "
or
Uy = Uy — U (1.2)

where u, and u) are the instantaneous velocities of the object relative to S
and S', respectively. This result, which is called the Galilean addition law for
velocities (or Galilean velocity transformation), is used in everyday observa-
tions and is consistent with our intuitive notions of time and space.

To obtain the relation between the accelerations measured by observers in
S and S’, we take a derivative of Equation 1.2 with respect to time and use the
results that d¢ = dt’ and vis constant:

!
du

dr’

= a, = a, (1.3)

Thus observers in different inertial frames measure the same acceleration for
an accelerating object. The mathematical terminology is to say that lengths
(Ax), time intervals, and accelerations are invariant under a Galilean transfor-
mation. Example 1.1 points up the distinction between invariant and covariant
and shows that transformation equations, in addition to converting mea-
surements made in one inertial frame to those in another, may be used
to show the covariance of physical laws.
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CHAPTER 1 RELATIVITY I

EXAMPLE 1.1 F, = ma, Is Covariant Under a
Galilean Transformation

Assume that Newton’s law F, = ma, has been shown to
hold by an observer in an inertial frame S. Show that
Newton’s law also holds for an observer in S’ or is covari-
ant under the Galilean transformation, that is, has the
form F, = m'a). Note that inertial mass is an invariant
quantity in Newtonian dynamics.

Solution Starting with the established law F, = ma,, we
use the Galilean transformation a, = a, and the fact that

m' = m to obtain F, = m'd. If we now assume that F, de-
pends only on the relative positions of m and the particles
interacting with m, that is, F, = f(x9 — x1, x3 — %1, . . .),
then F, = F}, because the Ax’s are invariant quantities.
Thus we find F, = m'a), and establish the covariance of
Newton’s second law in this simple case.

Exercise 2  Conservation of Linear Momentum Is Covariant Under the Galilean Transforma-
tion. Assume that two masses m] and mo are moving in the positive x direction with ve-
locities v7 and v5 as measured by an observer in S’ before a collision. After the colli-
sion, the two masses stick together and move with a velocity v' in S’. Show that if an
observer in S’ finds momentum to be conserved, so does an observer in S.

The Speed of Light

It is natural to ask whether the concept of Newtonian relativity and the
Galilean addition law for velocities in mechanics also apply to electricity, mag-
netism, and optics. Recall that Maxwell in the 1860s showed that the speed of
light in free space was given by ¢ = (pg0) ~'/2 = 3.00 X 10® m/s. Physicists of
the late 1800s were certain that light waves (like familiar sound and water
waves) required a definite medium in which to move, called the ether,® and
that the speed of light was ¢ only with respect to the ether or a frame fixed in
the ether called the ether frame. In any other frame moving at speed v relative
to the ether frame, the Galilean addition law was expected to hold. Thus, the
speed of light in this other frame was expected to be ¢ — v for light traveling
in the same direction as the frame, ¢ + v for light traveling opposite to the
frame, and in between these two values for light moving in an arbitrary direc-
tion with respect to the moving frame.

Because the existence of the ether and a preferred ether frame would show
that light was similar to other classical waves (in requiring a medium), consid-
erable importance was attached to establishing the existence of the special
ether frame. Because the speed of light is enormous, experiments involving
light traveling in media moving at then attainable laboratory speeds had not
been capable of detecting small changes of the size of ¢ £ v prior to the late
1800s. Scientists of the period, realizing that the Earth moved rapidly around

%It was proposed by Maxwell that light and other electromagnetic waves were waves in a luminifer-
ous ether, which was present everywhere, even in empty space. In addition to an overblown
name, the ether had contradictory properties since it had to have great rigidity to support the
high speed of light waves yet had to be tenuous enough to allow planets and other massive ob-
jects to pass freely through it, without resistance, as observed.
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1.3 THE MICHELSON-MORLEY EXPERIMENT 7

the Sun at 30 km/s, shrewdly decided to use the Earth itself as the moving
frame in an attempt to improve their chances of detecting these small changes
in light velocity.

From our point of view of observers fixed on Earth, we may say that we are
stationary and that the special ether frame moves past us with speed v. Deter-
mining the speed of light under these circumstances is just like determining
the speed of an aircraft in a moving air current or wind, and consequently we
speak of an “ether wind” blowing through our apparatus fixed to the Earth.
If v is the velocity of the ether relative to the Earth, then the speed of light
should have its maximum value, ¢+ v, when propagating downwind, as
shown in Figure 1.3a. Likewise, the speed of light should have its minimum
value, ¢ — v, when propagating upwind, as in Figure 1.3b, and an intermediate
value, (¢ — v?)!/2 in the direction perpendicular to the ether wind, as in
Figure 1.3c. If the Sun is assumed to be at rest in the ether, then the velocity of the
ether wind would be equal to the orbital velocity of the Earth around the Sun,
which has a magnitude of about 3 X 10 m/s compared to ¢ = 3 X 108 m/s.
Thus, the change in the speed of light would be about 1 part in 10* for mea-
surements in the upwind or downwind directions, and changes of this size
should be detectable. However, as we show in the next section, all attempts to
detect such changes and establish the existence of the ether proved futile!

1.3 THE MICHELSON-MORLEY EXPERIMENT

The famous experiment designed to detect small changes in the speed of light
with motion of an observer through the ether was performed in 1887 by
American physicist Albert A. Michelson (1852-1931) and the American
chemist Edward W. Morley (1838-1923).# We should state at the outset that
the outcome of the experiment was negative, thus contradicting the ether hy-
pothesis. The highly accurate experimental tool perfected by these pioneers
to measure small changes in light speed was the Michelson interferometer,
shown in Figure 1.4. One of the arms of the interferometer was aligned along
the direction of the motion of the Earth through the ether. The Earth moving
through the ether would be equivalent to the ether flowing past the Earth in
the opposite direction with speed v, as shown in Figure 1.4. This ether wind
blowing in the opposite direction should cause the speed of light measured in
the Earth’s frame of reference to be ¢ — v as it approaches the mirror My in
Figure 1.4 and ¢ + v after reflection. The speed v is the speed of the Earth
through space, and hence the speed of the ether wind, and ¢ is the speed of
light in the ether frame. The two beams of light reflected from M; and My
would recombine, and an interference pattern consisting of alternating dark
and bright bands, or fringes, would be formed.

During the experiment, the interference pattern was observed while the in-
terferometer was rotated through an angle of 90°. This rotation would change
the speed of the ether wind along the direction of the arms of the interferom-
eter. The effect of this rotation should have been to cause the fringe pattern to
shift slightly but measurably. Measurements failed to show any change in the

*A. A. Michelson and E. W. Morley, Am. J. Sci. 134:333, 1887.
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Figure 1.3 If the velocity of
the ether wind relative to the
Earth is v, and c is the velocity
of light relative to the ether,
the speed of light relative to
the Earth is (a) ¢+ v in the
downwind direction, (b) ¢— v
in the upwind direction, and
(©) (¢2 — v*) V2 in the direction
perpendicular to the wind.



8 CHAPTER 1 RELATIVITY I

Y T Ether wind
L

A v
9, *JQL+
My Arm 1

M
Y :

<—L—>|

Telescope

Figure 1.4 Diagram of the
Michelson interferometer. Ac-
cording to the ether wind con-
cept, the speed of light should
be ¢— v as the beam ap-
proaches mirror My and ¢+ v
after reflection.

interference pattern! The Michelson—Morley experiment was repeated by
other researchers under various conditions and at different times of the year
when the ether wind was expected to have changed direction and magnitude,
but the results were always the same: No fringe shift of the magnitude required was
ever observed.”

The negative results of the Michelson—Morley experiment not only meant
that the speed of light does not depend on the direction of light propagation
but also contradicted the ether hypothesis. The negative results also meant
that it was impossible to measure the absolute velocity of the Earth with
respect to the ether frame. As we shall see in the next section, Einstein’s
postulates compactly explain these and a host of other perplexing questions,
relegating the idea of the ether to the ash heap of history. Light is now
understood to be a phenomenon that requires no medium for its propagation.
As a result, the idea of an ether in which these waves could travel became
unnecessary.

Details of the Michelson-Morley Experiment

To understand the outcome of the Michelson—Morley experiment, let us as-
sume that the interferometer shown in Figure 1.4 has two arms of equal
length L. First consider the beam traveling parallel to the direction of the
ether wind, which is taken to be horizontal in Figure 1.4. According to New-
tonian mechanics, as the beam moves to the right, its speed is reduced by the
wind and its speed with respect to the Earth is ¢ — v. On its return journey, as
the light beam moves to the left downwind, its speed with respect to the Earth
is ¢ + v. Thus, the time of travel to the right is L/ (¢ — v), and the time of
travel to the left is L/ (¢ + v). The total time of travel for the round-trip along
the horizontal path is

L L 2Lc 2L < v >1

ct+ v c— v C

2

4 C

Now consider the light beam traveling perpendicular to the wind,
as shown in Figure 1.4. Because the speed of the beam relative to the
Earth is (¢2 — v?)!/2 in this case (see Fig. 1.3c), the time of travel for
each half of this trip is L/ (¢2 — v?)1/2 and the total time of travel for the
round-trip is

t |
2 (2 — )12 C

2L 2L ( V2 >—1/ 2
2

4

Thus, the time difference between the light beam traveling horizontally and
the beam traveling vertically is

21, 2\ 1 2 \~1/2
At:tl_t227[<l_7> —<1—7

5From an Earth observer’s point of view, changes in the Earth’s speed and direction in the course
of a year are viewed as ether wind shifts. In fact, even if the speed of the Earth with respect to the
ether were zero at some point in the Earth’s orbit, six months later the speed of the Earth would
be 60 km/s with respect to the ether, and one should find a clear fringe shift. None has ever been
observed, however.
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1.3 THE MICHELSON-MORLEY EXPERIMENT 9

Because v?/¢? << 1, this expression can be simplified by using the following
binomial expansion after dropping all terms higher than second order:

1—-—x"=1—nx (forx<<1)
In our case, x = v2/¢2, and we find

L 2
At=1t) — ty~—5 (1.4)
C

The two light beams start out in phase and return to form an interference pat-
tern. Let us assume that the interferometer is adjusted for parallel fringes and
that a telescope is focused on one of these fringes. The time difference be-
tween the two light beams gives rise to a phase difference between the beams,
producing the interference fringe pattern when they combine at the position
of the telescope. A difference in the pattern (Fig. 1.6) should be detected
by rotating the interferometer through 90° in a horizontal plane, such that
the two beams exchange roles. This results in a net time difference of twice
that given by Equation 1.4. The path difference corresponding to this time
difference is

212 Image not available due to copyright restrictions

Ad = ¢(2A1) = —
¢

The corresponding fringe shift is equal to this path difference divided by the
wavelength of light, A, because a change in path of 1 wavelength corresponds
to a shift of 1 fringe.

2102

Shift =
! A2

(1.5)

In the experiments by Michelson and Morley, each light beam was reflected
by mirrors many times to give an increased effective path length L of about
11 m. Using this value, and taking v to be equal to 3 X 10* m/s, the speed of
the Earth about the Sun, gives a path difference of

_ 2(11m) (3 X 10*m/s)2

=9292x%x 1077
(3 X 10° m/s)2 22> 107 m

Ad

Fixed spacing
(one fringe)

Fixed
marker

(a) (b)

Figure 1.6 Interference fringe schematic showing (a) fringes before rotation and
(b) expected fringe shift after a rotation of the interferometer by 90°.
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Postulates of special relativity

This extra distance of travel should produce a noticeable shift in the fringe
pattern. Specifically, using light of wavelength 500 nm, we find a fringe shift
for rotation through 90° of

Ad  22X10"m

Shift = — =

S~ 0.40
A 5.0X107m

The precision instrument designed by Michelson and Morley had the capabil-
ity of detecting a shift in the fringe pattern as small as 0.01 fringe. However,
they detected no shift in the fringe pattern. Since then, the experiment has been
repeated many times by various scientists under various conditions, and no
fringe shift has ever been detected. Thus, it was concluded that one cannot
detect the motion of the Earth with respect to the ether.

Many efforts were made to explain the null results of the Michelson—
Morley experiment and to save the ether concept and the Galilean addition law
for the velocity of light. Because all these proposals have been shown to be
wrong, we consider them no further here and turn instead to an auspicious
proposal made by George F. Fitzgerald and Hendrik A. Lorentz. In the 1890s,
Fitzgerald and Lorentz tried to explain the null results by making the following
ad hoc assumption. They proposed that the length of an object moving at

speed v would contract along the direction of travel by a factor of V1 — v2/¢%.
The net result of this contraction would be a change in length of one of the
arms of the interferometer such that no path difference would occur as the in-
terferometer was rotated.

Never in the history of physics were such valiant efforts devoted to trying
to explain the absence of an expected result as those directed at the
Michelson—Morley experiment. The difficulties raised by this null result
were tremendous, not only implying that light waves were a new kind of wave
propagating without a medium but that the Galilean transformations
were flawed for inertial frames moving at high relative speeds. The stage
was set for Albert Einstein, who solved these problems in 1905 with his special
theory of relativity.

1.4 POSTULATES OF SPECIAL RELATIVITY

In the previous section we noted the impossibility of measuring the speed of
the ether with respect to the Earth and the failure of the Galilean velocity
transformation in the case of light. In 1905, Albert Einstein (Fig. 1.7) pro-
posed a theory that boldly removed these difficulties and at the same time
completely altered our notion of space and time.® Einstein based his special
theory of relativity on two postulates.

1. The Principle of Relativity: All the laws of physics have the same form
in all inertial reference frames.

2. The Constancy of the Speed of Light: The speed of light in vacuum has
the same value, ¢ = 3.00 X 108 m/s, in all inertial frames, regardless of the
velocity of the observer or the velocity of the source emitting the light.

6A. Einstein, “On the Electrodynamics of Moving Bodies,” Ann. Physik 17:891, 1905. For an English
translation of this article and other publications by Einstein, see the book by H. Lorentz,
A. Einstein, H. Minkowski, and H. Weyl, The Principle of Relativity, Dover, 1958.
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Ibert Einstein, one of the
greatest physicists of all time,
was born in Ulm, Germany.

As a child, Einstein was very un-
happy with the discipline of German
schools and completed his early edu-
cation in Switzerland at age 16. Be-
cause he was unable to obtain an
academic position following gradua-
tion from the Swiss Federal Poly-
technic School in 1901, he accepted
a job at the Swiss Patent Office in
Berne. During his spare time, he
continued his studies in theoretical
physics. In 1905, at the age of 26, he
published four scientific papers that

B I OGRAPHY

ALBERT EINSTEIN
(1879-1955)

revolutionized physics. One of these
papers, which won him the Nobel
prize in 1921, dealt with the pho-
toelectric effect. Another was con-
cerned with Brownian motion, the
irregular motion of small particles
suspended in a liquid. The remain-
ing two papers were concerned with
what is now considered his most
important contribution of all, the

Image not available due to copyright restrictions

special theory of relativity. In 1915,
Einstein published his work on the
general theory of relativity, which re-
lates gravity to the structure of space
and time. One of the remarkable
predictions of the theory is that
strong gravitational forces in the
vicinity of very massive objects cause
light beams to deviate from straight-
line paths. This and other predic-
tions of the general theory of rel-
ativity have been experimentally
verified (see the essay on our com-
panion Web site by Clifford Will).

Einstein made many other im-
portant contributions to the devel-
opment of modern physics, includ-
ing the concept of the light
quantum and the idea of stimulated
emission of radiation, which led to
the invention of the laser 40 years
later. However, throughout his life,
he rejected the probabilistic inter-
pretation of quantum mechanics
when describing events on the
atomic scale in favor of a determin-
istic view. He is quoted as saying,
“God does not play dice with the
universe.” This comment is reputed
to have been answered by Niels
Bohr, one of the founders of quan-
tum mechanics, with “Don’t tell God
what to do!”

In 1933, Einstein left Germany
(by then under Nazis control) and
spent his remaining years at the In-
stitute for Advanced Study in Prince-
ton, New Jersey. He devoted most of
his later years to an unsuccessful
search for a unified theory of gravity
and electromagnetism.
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The first postulate asserts that all the laws of physics, those dealing with
electricity and magnetism, optics, thermodynamics, mechanics, and so on, will
have the same mathematical form or be covariant in all coordinate frames
moving with constant velocity relative to one another. This postulate is a
sweeping generalization of Newton’s principle of relativity, which refers only to
the laws of mechanics. From an experimental point of view, Einstein’s princi-
ple of relativity means that no experiment of any type can establish an
absolute rest frame, and that all inertial reference frames are experimentally
indistinguishable.

Note that postulate 2, the principle of the constancy of the speed of
light, is consistent with postulate 1: If the speed of light was not the same in
all inertial frames but was ¢ in only one, it would be possible to distinguish
between inertial frames, and one could identify a preferred, absolute frame
in contradiction to postulate 1. Postulate 2 also does away with the problem
of measuring the speed of the ether by essentially denying the existence of
the ether and boldly asserting that light always moves with speed ¢ with re-
spect to any inertial observer. Postulate 2 was a brilliant theoretical insight
on Einstein’s part in 1905 and has since been directly confirmed experi-
mentally in many ways. Perhaps the most direct demonstration involved
measuring the speed of very high frequency electromagnetic waves (gamma
rays) emitted by unstable particles (neutral pions) traveling at 99.975% of
the speed of light with respect to the laboratory. The measured gamma ray
speed relative to the laboratory agreed in this case to five significant figures
with the speed of light in empty space.

The Michelson—Morley experiment was performed before Einstein pub-
lished his work on relativity, and it is not clear that Einstein was aware of the
details of the experiment. Nonetheless, the null result of the experiment can
be readily understood within the framework of Einstein’s theory. According to
his principle of relativity, the premises of the Michelson-Morley experiment
were incorrect. In the process of trying to explain the expected results, we
stated that when light traveled against the ether wind its speed was ¢ — v, in ac-
cordance with the Galilean addition law for velocities. However, if the state of
motion of the observer or of the source has no influence on the value found
for the speed of light, one will always measure the value to be c¢. Likewise, the
light makes the return trip after reflection from the mirror at a speed of ¢, and
not with the speed ¢ + v. Thus, the motion of the Earth should not influence
the fringe pattern observed in the Michelson—Morley experiment, and a null
result should be expected.

Perhaps at this point you have rightly concluded that the Galilean velocity
and coordinate transformations are incorrect; that is, the Galilean transforma-
tions do not keep all the laws of physics in the same form for different inertial
frames. The correct coordinate and time transformations that preserve the co-
variant form of all physical laws in two coordinate systems moving uniformly
with respect to each other are called Lorentz transformations. These are derived
in Section 1.6. Although the Galilean transformation preserves the form of
Newton’s laws in two frames moving uniformly with respect to each other,
Newton’s laws of mechanics are limited laws that are valid only for low speeds.
In general, Newton’s laws must be replaced by Einstein’s relativistic laws of me-
chanics, which hold for all speeds and are invariant, as are all physical laws,
under the Lorentz transformations.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.



1.5 CONSEQUENCES OF SPECIAL RELATIVITY

1.5, CONSEQUENCES OF SPECIAL RELATIVITY

Almost everyone who has dabbled even superficially with science is aware of
some of the startling predictions that arise because of Einstein’s approach to
relative motion. As we examine some of the consequences of relativity in this
section, we shall find that they conflict with our basic notions of space and
time. We restrict our discussion to the concepts of length, time, and simultane-
ity, which are quite different in relativistic mechanics and Newtonian mechan-
ics. For example, we will find that the distance between two points and the time in-
terval between two events depend on the frame of reference in which they are measured.
That is, there is no such thing as absolute length or absolute time in relativity. Further-
more, events al different locations that occur simultaneously in one frame are not si-
multaneous in another frame moving uniformly past the first.

Before we discuss the consequences of special relativity, we must first under-
stand how an observer in an inertial reference frame describes an event. We
define an event as an occurrence described by three space coordinates and
one time coordinate. In general, different observers in different inertial
frames would describe the same event with different spacetime coordinates.

The reference frame used to describe an event consists of a coordinate grid
and a set of clocks situated at the grid intersections, as shown in Figure 1.8 in
two dimensions. It is necessary that the clocks be synchronized. This can be ac-
complished in many ways with the help of light signals. For example, suppose
an observer at the origin with a master clock sends out a pulse of light at ¢ = 0.
The light pulse takes a time 7/¢ to reach a second clock, situated a distance r
from the origin. Hence, the second clock will be synchronized with the clock
at the origin if the second clock reads a time 7/c¢ at the instant the pulse
reaches it. This procedure of synchronization assumes that the speed of light
has the same value in all directions and in all inertial frames. Furthermore, the
procedure concerns an event recorded by an observer in a specific inertial ref-
erence frame. Clocks in other inertial frames can be synchronized in a similar
manner. An observer in some other inertial frame would assign different
spacetime coordinates to events, using another coordinate grid with another
array of clocks.

Figure 1.8 In relativity, we use a reference frame consisting of a coordinate grid and
a set of synchronized clocks.
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Simultaneity and the Relativity of Time

A basic premise of Newtonian mechanics is that a universal time scale exists
that is the same for all observers. In fact, Newton wrote that “Absolute, true,
and mathematical time, of itself, and from its own nature, flows equably with-
out relation to anything external.” Thus, Newton and his followers simply took
simultaneity for granted. In his special theory of relativity, Einstein abandoned
this assumption. According to Einstein, a time interval measurement depends on
the reference frame in which the measurement is made.

Einstein devised the following thought experiment to illustrate this point. A
boxcar moves with uniform velocity, and two lightning bolts strike the ends of
the boxcar, as in Figure 1.9a, leaving marks on the boxcar and ground. The
marks left on the boxcar are labeled A’ and B’; those on the ground are la-
beled A and B. An observer at O' moving with the boxcar is midway between
A" and B', and a ground observer at O is midway between A and B. The events
recorded by the observers are the light signals from the lightning bolts.

The two light signals reach the observer at O at the same time, as indicated
in Figure 1.9b. This observer realizes that the light signals have traveled at the
same speed over equal distances. Thus, observer O concludes that the events
at A and B occurred simultaneously. Now consider the same events as viewed
by the observer on the boxcar at O'. By the time the light has reached ob-
server O, observer O" has moved as indicated in Figure 1.9b. Thus, the light
signal from B’ has already swept past O', but the light from A’ has not yet
reached O'. According to Einstein, observer O' must find that light travels at the
same speed as that measured by observer O. Therefore, observer O' concludes that
the lightning struck the front of the boxcar before it struck the back. This
thought experiment clearly demonstrates that the two events, which appear to
O to be simultaneous, do not appear to O’ to be simultaneous. In other words,

Two events that are simultaneous in one frame are in general not
simultaneous in a second frame moving with respect to the first. That
is, simultaneity is not an absolute concept, but one that depends on the
state of motion of the observer.

(a) (b)

Figure 1.9 Two lightning bolts strike the ends of a moving boxcar. (a) The events
appear to be simultaneous to the stationary observer at O, who is midway between A
and B. (b) The events do not appear to be simultaneous to the observer at O', who
claims that the front of the train is struck before the rear.
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At this point, you might wonder which observer is right concerning the two
events. The answer is that both are correct, because the principle of relativity
states that there is no preferred inertial frame of reference. Although the two ob-
servers reach different conclusions, both are correct in their own reference
frame because the concept of simultaneity is not absolute. This, in fact, is the
central point of relativity—any uniformly moving frame of reference can be
used to describe events and do physics. However, observers in different inertial
frames will always measure different time intervals with their clocks and differ-
ent distances with their meter sticks. Nevertheless, they will both agree on the
forms of the laws of physics in their respective frames, because these laws must
be the same for all observers in uniform motion. It is the alteration of time
and space that allows the laws of physics (including Maxwell’s equations) to be
the same for all observers in uniform motion.

Time Dilation

The fact that observers in different inertial frames always measure different time
intervals between a pair of events can be illustrated in another way by consider-
ing a vehicle moving to the right with a speed v, as in Figure 1.10a. A mirror is
fixed to the ceiling of the vehicle, and observer O’, at rest in this system, holds a
laser a distance d below the mirror. At some instant the laser emits a pulse of light
directed toward the mirror (event 1), and at some later time, after reflecting
from the mirror, the pulse arrives back at the laser (event 2). Observer O’ carries
a clock, C’, which she uses to measure the time interval A¢’ between these two
events. Because the light pulse has the speed ¢, the time it takes to travel from O’
to the mirror and back can be found from the definition of speed:

, distance traveled 2d
At = =—

= 1.6
speed of light ¢ (1.6)

This time interval A¢’—measured by O’, who, remember, is at rest in the mov-
ing vehicle—requires only a single clock, C’, in this reference frame.

v v
— . _—
Mirror ﬁ ﬁ ﬁ
y —————1 K —J

(a) (b)

Figure 1.10 (a) A mirror is fixed to a moving vehicle, and a light pulse leaves O at
rest in the vehicle. (b) Relative to a stationary observer on Earth, the mirror and O’
move with a speed v. Note that the distance the pulse travels measured by the station-
ary observer on Earth is greater than 2d. (c) The right triangle for calculating the rela-
tionship between Atand At'.
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Time dilation

A moving clock runs slower

Now consider the same set of events as viewed by observer Oin a second frame
(Fig. 1.10b). According to this observer, the mirror and laser are moving to the
right with a speed v, and as a result, the sequence of events appears different to
this observer. By the time the light from the laser reaches the mirror, the mirror
has moved to the right a distance vA¢/2, where At is the time interval required
for the light pulse to travel from O’ to the mirror and back as measured by O. In
other words, O concludes that, because of the motion of the vehicle, if the light is
to hit the mirror, it must leave the laser at an angle with respect to the vertical
direction. Comparing Figures 1.10a and 1.10b, we see that the light must travel
farther in (b) than in (a). (Note that neither observer “knows” that he or she is
moving. Each is at rest in his or her own inertial frame.)

According to the second postulate of special relativity, both observers must
measure ¢ for the speed of light. Because the light travels farther according to
O, it follows that the time interval Az measured by O is longer than the time in-
terval A¢" measured by O'. To obtain a relationship between Az and A¢', it is
convenient to use the right triangle shown in Figure 1.10c. The Pythagorean

theorem gives
< cAt )2 ( vA¢ >2 9
= +d
2 2

2d 2d

Solving for At gives

At = = (1.7)
Ve2 — 2 N1 — v2/¢2
Because At' = 2d/ ¢, we can express Equation 1.7 as
At
A= —————— = YA/ (1.8)

V1 — (v2/c2)

where y = (1 — v%/¢?)~1/2. Because v is always greater than unity, this result
says that the time interval A¢ measured by the observer moving with respect to
the clock is longer than the time interval At" measured by the observer at rest
with respect to the clock. This effect is known as time dilation.

The time interval A¢’ in Equation 1.8 is called the proper time. In general,
proper time, denoted At is defined as the time interval between two
events as measured by an observer who sees the events occur at the
same point in space. In our case, observer O’ measures the proper time.
That is, proper time is always the time measured by an observer moving
along with the clock. As an aid in solving problems it is convenient to
express Equation 1.8 in terms of the proper time interval, Ay, as

At = yAy, (1.9)

Because the time between ticks of a moving clock, y(2d/¢), is observed to
be longer than the time between ticks of an identical clock at rest, 2d/ ¢, one
commonly says, “A moving clock runs slower than a clock at rest by a factor of y.”
This is true for ordinary mechanical clocks as well as for the light clock just
described. In fact, we can generalize these results by stating that all physical
processes, including chemical reactions and biological processes, slow
down when observed from a reference frame in which they are moving. For
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example, the heartbeat of an astronaut moving through space would keep
time with a clock inside the spaceship, but both the astronaut’s clock and
her heartbeat appear slow to an observer, with another clock, in any other
reference frame. The astronaut would not have any sensation of life slowing
down in her frame.

Time dilation is a very real phenomenon that has been verified by various
experiments. For example, muons are unstable elementary particles that
have a charge equal to that of an electron and a mass 207 times that of the
electron. Muons are naturally produced by the collision of cosmic radiation
with atoms at a height of several thousand meters above the surface of the
Earth. Muons have a lifetime of only 2.2 us when measured in a reference
frame at rest with respect to them. If we take 2.2 us (proper time) as the
average lifetime of a muon and assume that its speed is close to the speed
of light, we would find that these particles could travel a distance of about
650 m before they decayed. Hence, they could not reach the Earth from
the upper atmosphere where they are produced. However, experiments
show that a large number of muons do reach the Earth. The phenomenon
of time dilation explains this effect (see Fig. 1.11a). Relative to an observer
on Earth, the muons have a lifetime equal to y7r, where 7= 2.2 us is the
lifetime in a frame of reference traveling with the muons. For example,
for v = 0.99¢, y = 7.1 and y7 = 16 us. Hence, the average distance traveled
as measured by an observer on Earth is yur = 4700 m, as indicated in
Figure 1.11b.

In 1976, experiments with muons were conducted at the laboratory of the
European Council for Nuclear Research (CERN) in Geneva. Muons were in-
jected into a large storage ring, reaching speeds of about 0.9994¢. Electrons
produced by the decaying muons were detected by counters around the ring,
enabling scientists to measure the decay rate, and hence the lifetime, of the
muons. The lifetime of the moving muons was measured to be about 30 times
as long as that of the stationary muon (see Fig. 1.12), in agreement with the
prediction of relativity to within two parts in a thousand.

It is quite interesting that time dilation can be observed directly by com-
paring high-precision atomic clocks, one carried aboard a jet, the other

—
S

Muon moving
at 0.9994¢

—
&
.

Muon
at rest

Fraction of muons remaining

| 1
50 100 150
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Figure 1.12 Decay curves for muons traveling at a speed of 0.9994¢ and for muons
at rest.
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Figure 1.11 (a) Muons travel-
ing with a speed of 0.99¢ travel
only about 650 m as measured
in the muons’ reference frame,
where their lifetime is about
2.2 us. (b) The muons travel
about 4700 m as measured by
an observer on Earth. Because
of time dilation, the muons’
lifetime is longer as measured
by the Earth observer.
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remaining in a laboratory on Earth. The actual experiment involved the use of
very stable cesium beam atomic clocks.” Time intervals measured with four such
clocks in jet flight were compared with time intervals measured by reference
atomic clocks located at the U.S. Naval Observatory. To compare these results
with the theory, many factors had to be considered, including periods of accel-
eration and deceleration relative to the Earth, variations in direction of travel,
and the weaker gravitational field experienced by the flying clocks compared
with the Earth-based clocks. The results were in good agreement with the pre-
dictions of the special theory of relativity and can be completely explained in
terms of the relative motion between the Earth and the jet aircraft.

EXAMPLE 1.2 What Is the Period of the
Pendulum?

The period of a pendulum is measured to be 3.0 s in the
rest frame of the pendulum. What is the period of the
pendulum when measured by an observer moving at a
speed of 0.95¢ with respect to the pendulum?

Solution In this case, the proper time is equal to
3.0 s. From the point of view of the observer, the pen-
dulum is moving at 0.95¢ past her. Hence the pendu-
lum is an example of a moving clock. Because a moving

clock runs slower than a stationary clock by vy, Equation
1.8 gives

1
V1 — (0.95¢)2/ 2

T=1(32)(3.0s) =96s

T=vyT" = 3.0s

That is, a moving pendulum slows down or takes longer
to complete one period.

Exercise 3

If the speed of the observer is increased by 5.0%, what is the period of the

pendulum when measured by this observer?

Answer 43 s. Note that the 5.0% increase in speed causes more than a 300% increase

in the dilated time.

Length Contraction

We have seen that measured time intervals are not absolute, that is, the time
interval between two events depends on the frame of reference in which it
is measured. Likewise, the measured distance between two points depends
on the frame of reference. The proper length of an object is defined as
the length of the object measured by someone who is at rest with re-
spect to the object. You should note that proper length is defined similarly
to proper time, in that proper time is the time between ticks of a clock mea-
sured by an observer who is at rest with respect to the clock. The length of
an object measured by someone in a reference frame that is moving relative
to the object is always less than the proper length. This effect is known as

length contraction.

To understand length contraction quantitatively, consider a spaceship trav-
eling with a speed v from one star to another and two observers, one on Earth

7. C. Hafele and R. E. Keating, “Around the World Atomic Clocks: Relativistic Time Gains
Observed,” Science, July 14, 1972, p- 168.
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and the other in the spaceship. The observer at rest on Earth (and also as-
sumed to be at rest with respect to the two stars) measures the distance be-
tween the stars to be L,, where L, is the proper length. According to this ob-
server, the time it takes the spaceship to complete the voyage is At = L,/v.
What does an observer in the moving spaceship measure for the distance be-
tween the stars? Because of time dilation, the space traveler measures a smaller
time of travel: A¢" = At/+y. The space traveler claims to be at rest and sees the
destination star as moving toward the spaceship with speed v. Because the
space traveler reaches the star in the shorter time At¢’, he or she concludes
that the distance, L, between the stars is shorter than Lp. This distance mea-
sured by the space traveler is given by

At
L=vAl = v—
Y
Because Lp = vAi, we see that L = Lp/y or
v? 1/2
L= Ll, 1 - 7 (110)

where (1 — v2/¢%)1/2 is a factor less than 1. This result may be interpreted as
follows:

If an object has a proper length L, when it is measured by an observer at
rest with respect to the object, when it moves with speed v in a direction
parallel to its length, its length L is measured to be shorter

v2 \1/2
accordingto L = L,|1 — — | .
¢

Note that the length contraction takes place only along the direction of mo-
tion. For example, suppose a stick moves past a stationary Earth observer with
a speed v, as in Figure 1.13b. The length of the stick as measured by an ob-
server in the frame attached to it is the proper length L[,, as illustrated in Fig-
ure 1.13a. The length of the stick, L, as measured by the Earth observer is
shorter than L, by the factor (1 — v2/¢2) /2 Note that length contraction is a
symmetric effect: If the stick were at rest on Earth, an observer in a frame mov-
ing past the earth at speed v would also measure its length to be shorter by the
same factor (1 — v%/2)V2,

As we mentioned earlier, one of the basic tenets of relativity is that all
inertial frames are equivalent for analyzing an experiment. Let us return to
the example of the decaying muons moving at speeds close to the speed of
light to see an example of this. An observer in the muon’s reference frame
would measure the proper lifetime, whereas an Earth-based observer
measures the proper height of the mountain in Figure 1.11. In the muon’s
reference frame, there is no time dilation, but the distance of travel is
observed to be shorter when measured from this frame. Likewise, in the
Earth observer’s reference frame, there is time dilation, but the distance of
travel is measured to be the proper height of the mountain. Thus, when
calculations on the muon are performed in both frames, one sees the effect
of “offsetting penalties,” and the outcome of the experiment is the same!
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Figure 1.13 A stick moves
to the right with a speed w.
(a) The stick as viewed in a
frame attached to it. (b) The
stick as seen by an observer who
sees it move past her at v. Any
inertial observer finds that the
length of a meter stick moving
past her with speed v is less than
the length of a stationary stick
by a factor of (1 — 2/ 2172,
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> v=0.8¢

(a) (b)

Figure 1.14 Computer-simulated photographs of a box (a) at rest relative to the cam-
era and (b) moving at a speed v = 0.8¢relative to the camera.

Note that proper length and proper time are measured in different refer-
ence frames.

If an object in the shape of a box passing by could be photographed, its im-
age would show length contraction, but its shape would also be distorted. This
is illustrated in the computer-simulated drawings shown in Figure 1.14 for a
box moving past an observer with a speed v = 0.8¢c. When the shutter of the
camera is opened, it records the shape of the object at a given instant of time.
Because light from different parts of the object must arrive at the shutter at
the same time (when the photograph is taken), light from more distant parts
of the object must start its journey earlier than light from closer parts. Hence,
the photograph records different parts of the object at different times. This re-
sults in a highly distorted image, which shows horizontal length contraction,

vertical curvature, and image rotation.

EXAMPLE 1.3 The Contraction of a Spaceship

A spaceship is measured to be 100 m long while it is at
rest with respect to an observer. If this spaceship now flies
by the observer with a speed of 0.99¢, what length will the
observer find for the spaceship?

Solution The proper length of the ship is 100 m. From
Equation 1.10, the length measured as the spaceship flies
by is

2 0.990)*
L=1,\1 - = a00m\1 - 207 _ gy
C C

Exercise 4 If the ship moves past the observer at
0.01000¢, what length will the observer measure?

Answer 99.99 m.

EXAMPLE 1.4 How High Is the Spaceship?

An observer on Earth sees a spaceship at an altitude of
435 m moving downward toward the Earth at 0.970c
What is the altitude of the spaceship as measured by an
observer in the spaceship?

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.

Solution The proper length here is the Earth—ship
separation as seen by the Earth-based observer, or 435 m.
The moving observer in the ship finds this separation
(the altitude) to be

2 (0.970¢)
1—— = 435m)\1 - —5—

L=1L
’ c c

= 106 m

EXAMPLE 1.5 The Triangular Spaceship

A spaceship in the form of a triangle flies by an observer
at 0.950c. When the ship is measured by an observer at
rest with respect to the ship (Fig. 1.15a), the distances x
and y are found to be 50.0 m and 25.0 m, respectively.
What is the shape of the ship as seen by an observer who
sees the ship in motion along the direction shown in Fig-
ure 1.15b?

Solution The observer sees the horizontal length of
the ship to be contracted to a length of



x L
(a) (b)
Figure 1.15 (Example 1.5) (a) When the spaceship is

at rest, its shape is as shown. (b) The spaceship appears
to look like this when it moves to the right with a speed v.
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0.9500)°
= 30.0m) \1 - B0 56
4

The 25-m vertical height is unchanged because it is per-
pendicular to the direction of relative motion between
the observer and the spaceship. Figure 1.15b represents
the shape of the spaceship as seen by the observer who
sees the ship in motion.

Note that only its x dimension is contracted in this case.

THE TWINS PARADOX

If we placed a living organism in a box . . . one could arrange that the organism, after an
arbitrary lengthy flight, could be returned to its original spot in a scarcely altered condition,
while corresponding organisms which had remained in their original positions had long
since given way to new generations. (Einstein’s original statement of the twins
paradox in 1911)

An intriguing consequence of time dilation is the so-called clock or twins para-
dox. Consider an experiment involving a set of identical 20-year-old twins named
Speedo and Goslo. The twins carry with them identical clocks that have been
synchronized. Speedo, the more adventuresome of the two, sets out on an epic jour-
ney to planet X, 10 lightyears from Earth. (Note that 1 lightyear (ly) is the distance
light travels through free space in 1 year.) Furthermore, his spaceship is capable of a
speed of 0.500¢ relative to the inertial frame of his twin brother. After reaching
planet X, Speedo becomes homesick and impetuously sets out on a return trip to
Earth at the same high speed of the outbound journey. On his return, Speedo is
shocked to discover that many things have changed during his absence. To Speedo,
the most significant change is that his twin brother Goslo has aged more than he and is
now 60 years of age. Speedo, on the other hand, has aged by only 34.6 years.

At this point, it is fair to raise the following question—Which twin is the traveler
and which twin would really be the younger of the two? If motion is relative, the
twins are in a symmetric situation and either’s point of view is equally valid. From
Speedo’s perspective, it is he who is at rest while Goslo is on a high-speed space jour-
ney. To Speedo, it is Goslo and the Earth that have raced away on a 17.3-year jour-
ney and then headed back for another 17.3 years. This leads to the paradox: Which
twin will have developed the signs of excess aging?

To resolve this apparent paradox, recall that special relativity deals with inertial
frames of reference moving with respect to one another at uniform speed. However,
the trip situation is not symmetric. Speedo, the space traveler, must experience
acceleration during his journey. As a result, his state of motion is not always uni-
form, and consequently Speedo is not in an inertial frame. He cannot regard him-
self to always be at rest and Goslo to be in uniform motion. Hence Speedo cannot
apply simple time dilation to Goslo’s motion, because to do so would be an incor-
rect application of special relativity. Therefore there is no paradox and Speedo will
really be the younger twin at the end of the trip.

The conclusion that Speedo is not in a single inertial frame is inescapable. We
may diminish the length of time needed to accelerate and decelerate Speedo’s
spaceship to an insignificant interval by using very large and expensive rockets and
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Figure 1.16 “I love hearing
that lonesome wail of the train
whistle as the frequency of the
wave changes due to the Dop-
pler effect.”

claim that he spends all but a negligible amount of time coasting to planet X at
0.500¢ in an inertial frame. However, to return to Earth, Speedo must slow down,
reverse his motion, and return in a different inertial frame, one which is moving
uniformly toward the Earth. At the very best, Speedo is in two different inertial
frames. The important point is that even when we idealize Speedo’s trip, it consists
of motion in two different inertial frames and a very real lurch as he hops from the
outbound ship to the returning Earth shuttle. Only Goslo remains in a single iner-
tial frame, and so only he can correctly apply the simple time dilation formula of
special relativity to Speedo’s trip. Thus, Goslo finds that instead of aging 40 years
(20 1y/0.500¢), Speedo actually ages only (V1 — v2/¢?) (40 yr), or 34.6 yr. Clearly,
Speedo spends 17.3 years going to planet X and 17.3 years returning in agreement
with our earlier statement.

The result that Speedo ages 34.6 yr while Goslo ages 40 yr can be confirmed in a
very direct experimental way from Speedo’s frame if we use the special theory of rel-
ativity but take into account the fact that Speedo’s idealized trip takes place in two differ-
ent inertial frames. In yet another flight of fancy, suppose that Goslo celebrates his
birthday each year in a flashy way, sending a powerful laser pulse to inform his twin
that Goslo is another year older and wiser. Because Speedo is in an inertial frame on
the outbound trip in which the Earth appears to be receding at 0.500¢, the flashes
occur at a rate of one every

1 1
1 - 0¥/ N [(0.5000)2/ 2]

yr = 1.15yr

This occurs because moving clocks run slower. Also, because the Earth is receding,
each successive flash must travel an additional distance of (0.500¢) (1.15 yr) between
flashes. Consequently, Speedo observes flashes to arrive with a total time between
flashes of 1.15 yr + (0.500¢) (1.15 yr) /¢ = 1.73 yr. The total number of flashes seen
by Speedo on his outbound voyage is therefore (1 flash/1.73 yr)(17.3 yr) =
10 flashes. This means that Speedo views the Earth clocks to run more slowly than
his own on the outbound trip because he observes 17.3 years to have passed for him
while only 10 years have passed on Earth.

On the return voyage, because the Earth is racing toward Speedo with
speed 0.500¢, successive flashes have less distance to travel, and the total
time Speedo sees between the arrival of flashes is drastically shortened:
1.15 yr — (0.500) (1.15 yr) = 0.577 yr/flash. Thus, during the return trip, Speedo
sees (1 flash/0.577 yr) (17.3 yr) = 30 flashes in total. In sum, during his 34.6 years of
travel, Speedo receives (10 + 30) flashes, indicating that his twin has aged 40 years.
Notice that there has been no failure of special relativity for Speedo as long as we
take his {wo inertial frames into account and assume negligible acceleration and de-
celeration times. On both the outbound and inbound trips Speedo correctly judges
the Earth clocks to run slower than his own, but on the return trip his rapid move-
ment toward the light flashes more than compensates for the slower rate of flashing.

The Relativistic Doppler Shift

Another important consequence of time dilation is the shift in frequency
found for light emitted by atoms in motion as opposed to light emitted
by atoms at rest. A similar phenomenon, the mournful drop in pitch of the
sound of a passing train’s whistle, known as the Doppler effect, is quite
familiar to most cowboys (Fig. 1.16). The Doppler shift for sound is usually
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studied in introductory physics courses and is especially interesting because
motion of the source with respect to the medium of propagation can
be clearly distinguished from motion of the observer. This means that in
the case of sound we can distinguish the “absolute motion” of frames moving
with respect to the air, which is the medium of propagation for sound.

Light waves must be analyzed differently from sound, because light waves
require no medium of propagation and no method exists of distinguishing the
motion of the light source from the motion of the observer. Thus, we expect
to find a different formula for the Doppler shift of light waves, one that is only
sensitive to the relative motion of source and observer and that holds for rela-
tive speeds of source and observer approaching c.

Consider a source of light waves at rest in frame S, emitting waves of frequency
fand wavelength A as measured in S. We wish to find the frequency f” and wave-
length A’ of the light as measured by an observer fixed in frame S’, which is mov-
ing with speed v toward S, as shown in Figure 1.17a and b. In general, we expect
/' to be greater than fif S" approaches S because more wave crests are crossed
per unit time, and we expect /' to be less than fif S’ recedes from S. In particular,
consider the situation from the point of view of an observer fixed in S’, as shown
in Figure 1.18. This figure shows two successive wavefronts (color) emitted when
the approaching source is at positions 1 and 2, respectively. If the time between
the emission of these wavefronts as measured in S’ is 7", during this time front 1
will move a distance ¢7" from position 1. During this same time, the light source

(b)

Figure 1.17 (a) A light source fixed in S emits wave crests separated in space by A
and moving outward at speed ¢ as seen from S. (b) What wavelength A’ is measured by
an observer at rest in S'? S” is a frame approaching S at speed v such that the x and
x'-axes coincide.
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1

Figure 1.18 The view from S'. 1, 2, and 3 (in black) show three successive positions
of Oseparated in time by 7", the period of the light as measured from S’.

will advance a distance v7" to the left of position 1, and the distance between suc-
cessive wavefronts will be measured in S’ to be

XN =T — ol (1.11)

Because we wish to obtain a formula for f’ (the frequency measured in §’) in
terms of f (the frequency measured in S), we use the expression for A’ from
Equation 1.11 in f" = ¢/A’ to obtain

¢

4
=— 1.12

/ (c—0v)T' ( )
To eliminate 7" in favor of 7, note that 7'is the proper time; that is, 7'is the
time between two events (the emission of successive wavefronts) that occur at
the same place in S, and consequently,

_r
V1 = (v2/¢?)
Substituting for 7" in Equation 1.12 and using /= 1/ 7T gives

, _ N1 — (0%/¢%)

T

or

V1 + (v/c)

e e (1.14)
/ V1 = (v/0) /
For clarity, this expression is often written
N1+
A (1.15)

ﬁ)bs = m ]gourcc

where fps is the frequency measured by an observer approaching a light
source, and fource 1S the frequency as measured in the source’s rest frame.
Equation 1.15 is the relativistic Doppler shift formula, which, unlike the
Doppler formula for sound, depends only on the relative speed v of the source
and observer and holds for relative speeds as large as ¢. Equation 1.15 agrees
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with physical intuition in predicting fps to be greater than foupce for an ap-
proaching emitter and receiver. The expression for the case of a receding
source is obtained by replacing vwith —vin Equation 1.15.

Although Christian Johann Doppler’s name is most frequently associated
with the effect in sound, he originally developed his ideas in an effort to
understand the shift in frequency or wavelength of the light emitted by mov-
ing atoms and astronomical objects. The most spectacular and dramatic use of
the Doppler effect has occurred in just this area in explaining the famous red
shift of absorption lines (wavelengths) observed for most galaxies. (A galaxy is
a cluster of millions of stars.) The term redshift refers to the shift of known ab-
sorption lines toward longer wavelengths, that is, toward the red end of the vis-
ible spectrum. For example, lines normally found in the extreme violet region
for a galaxy at rest with respect to the Earth are shifted about 100 nm toward
the red end of the spectrum for distant galaxies—indicating that these distant
galaxies are rapidly receding from us. The American astronomer Edwin Hubble
used this technique to confirm that most galaxies are moving away from us
and that the Universe is expanding. (For more about the expanding Universe
see Chapter 16, Cosmology, on our Web site.)

EXAMPLE 1.6 Determining the Speed of
Recession of the Galaxy Hydra

the galaxy. In particular, a cloud of ionized calcium atoms
produces very strong absorption at 394 nm for a galaxy at

Finally, solving for v/ ¢, we find

The light emitted by a galaxy contains a continuous distrib- Substituting fops = ¢/Aobs and fource = ¢/ Asource into this
ution of wavelengths because the galaxy is composed of equation gives

millions of stars and other thermal emitters. However,

some narrow gaps occur in the continuous spectrum where Aobe = V1 + (v/0) Mource

the radiation has been strongly absorbed by cooler gases in 1 = (v/0)

N1 = (v/0) 5.54 X 107 m/s.
ﬁ)bs - m ]gource

rest with respect to the Earth. For the galaxy Hydra, which v A2 = AL e

is 200 million ly away, this absorption is shifted to 475 nm. o A2 AL e

How fast is Hydra moving away from the Earth?

Solution For an approaching source and observer, o 9 9

Jobs = fource AN Aops < Agource  beCaUSE  fopshobs = € = - (475 nm)~ — (394 nm) = 0.185
JoourceAsource I the case of Hydra, Agps > Asurces 50 Hydra ¢ (475 nm)? + (394 nm)?

must be receding and we must use Therefore, Hydra is receding from us at v = 0.185¢ =

1.6 THE LORENTZ TRANSFORMATION

We have seen that the Galilean transformation is not valid when v approaches
the speed of light. In this section, we shall derive the correct coordinate
and velocity transformation equations that apply for all speeds in the range of
0 = v < ¢. This transformation, known as the Lorentz transformation, was
laboriously derived by Hendrik A. Lorentz (1853-1928, Dutch physicist) in
1890 as the transformation that made Maxwell’s equations covariant. However,
its real significance in a physical theory transcending electromagnetism was
first recognized by Einstein.
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The Lorentz coordinate transformation is a set of formulas that relates
the space and time coordinates of two inertial observers moving with a rela-
tive speed v. We have already seen two consequences of the Lorentz trans-
formation in the time dilation and length contraction formulas. The
Lorentz velocity transformation is the set of formulas that relate the velocity
components uy, 4, %, of an object moving in frame S to the velocity compo-
nents uy, uy, u, of the same object measured in frame S, which is moving
with a speed v relative to S. The Lorentz transformation formulas provide a
formal, concise, and almost mechanical method of solution of relativity
problems.

We start our derivation of the Lorentz transformation by noting that a
reasonable guess (based on physical intuition) about the form of the coor-
dinate equations can greatly reduce the algebraic complexity of the deriva-
tion. For simplicity, consider the standard frames, S and S’, with S’ moving
at a speed v along the +x direction (see Fig. 1.2). The origins of the two
frames coincide at ' = ¢ = 0. A reasonable guess about the dependence of
x' on xand tis

X = G(x — vl) (1.16)

where G is a dimensionless factor that does not depend on x or ¢ but is
some function of v/¢ such that Gis 1 in the limit as v/ ¢ approaches 0. The
form of Equation 1.16 is suggested by the form of the Galilean transforma-
tion, x* = x — vt, which we know is correct in the limit as v/¢ approaches
zero. The fact that Equation 1.16 is linear in x and ¢ is also important
because we require a single event in S (specified by xi, #;) to correspond to
a single event in S’ (specified by xi, {]). Assuming that Equation 1.16 is
correct, we can write the inverse Lorenlz coordinate transformation for x in
terms of x" and ¢ as

x= G(x' + ut') (1.17)

This follows from Einstein’s first postulate of relativity, which requires the laws
of physics to have the same form in both S and S’ and where the sign of v has
been changed to take into account the difference in direction of motion
of the two frames. In fact, we should point out that this important technique
for obtaining the inverse of a Lorentz transformation may be followed as a
general rule:

To obtain the inverse Lorentz transformation of any quantity, simply in-
terchange primed and unprimed variables and reverse the sign of the
frame velocity.

Returning to our derivation of the Lorentz transformations, our argu-
ment will be to take the differentials of x' and ¢’ and form an expression
that relates the measured velocity of an object in S', wy, = dx'/dt’, to the
measured velocity of that object in S, u, = dx/dt. We then determine G by
requiring that u), must equal ¢ in the case that u,, the velocity of an object
in frame S, is equal to ¢, in accord with Einstein’s second postulate of rela-
tivity. Once G has been determined, this simple algebraic argument conve-
niently provides both the Lorentz coordinate and velocity transformations.
Following this plan, we first find
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¢ = G{H (1/G2 — 1) %} (1.18)

by substituting Equation 1.16 into 1.17 and solving for ¢'. Taking differentials
of Equations 1.16 and 1.18 yields

dx' = G(dx — vdt) (1.19)
di' = G{dt-l— (1/G* — 1) %} (1.20)

Forming u) = dx’/dt' leads, after some simplification, to

, _dx Uy — V (1.21)
TR T T+ (/6% = 1) (uy/v) '

where u, = dx/dt.

Postulate 2 requires that the velocity of light be ¢ for any observer, so in the
case u, = ¢, we must also have u, = ¢. Using this condition in Equation 1.21
gives

c— v

"1+ 1/ - 1) (/)

(1.22)

Equation 1.22 may be solved to give

1
G=y=—F———r
T - (v*/?)

The direct coordinate transformation is thus x" = y(x — vt), and the inverse
transformation is x = y(x’ + vt'). To get the time transformation (¢’ as a func-
tion of ¢and x), substitute G = vy into Equation 1.18 to obtain

, X
t = t—7

In summary, the complete coordinate transformations between an event
found to occur at (x, y, z, ) in Sand («', y', 2/, t') in S’ are

x = y(x — vt) (1.23)
Yy =y (1.24)
7 =2z (1.25)
UX
t' = y(t = —2> (1.26)
c
where
1

’ V1 — (v2/c2)

If we wish to transform coordinates of an event in the S’ frame to coordi-
nates in the S frame, we simply replace v by —v and interchange the primed
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and unprimed coordinates in Equations 1.23 through 1.26. The resulting in-
verse transformation is given by

where
Inverse Lorentz

transformation for S’ — S

x=y(x — o)
y_y, (1.27)
z=1z

~
I
<
/
Sy,
+
&
hm‘ =
~—

[ V1 — 2/ 2

In the Lorentz transformation, note that { depends on both ¢’ and x". Likewise,
" depends on both ¢ and x. This is unlike the case of the Galilean transforma-
tion, in which ¢ = ¢'. When v << ¢, the Lorentz transformation should reduce
to the Galilean transformation. To check this, note that as v— 0, v/¢ < 1 and
v2/¢% << 1, so that Equations 1.23-1.26 reduce in this limit to the Galilean
coordinate transformation equations, given by

X =x— vt

EXAMPLE 1.7 Time Dilation Is Contained in
the Lorentz Transformation

Show that the phenomenon of time dilation is con-
tained in the Lorentz coordinate transformation. A
light located at (xg, y9, z9) is turned abruptly on at {
and off at # in frame S. (a) For what time interval is
the light measured to be on in frame S'? (See Figure
1.2 for a picture of the two standard frames.) (b) What
is the distance between where the light is turned on
and off as measured by S'?

Solution (a) The two events, the light turning on and
the light turning off, are measured to occur in the two
frames as follows:

Event 1 (light on) Event 2 (light off)

Frame S X0, 0 X0, lo

Frame S’ x5 = y(xp — vly)

VX
— —_——
lg = v\t 2

xp = y(xo — vfy)

VX
— —_——
h=vy\{hu 2

y =y

Note that the y and z coordinates are not affected be-
cause the motion of S is along x. As measured by S', the
light is on for a time interval

UX() VX
to—t1=17y\|ta— o )~ v\h——0©
4 4

=yt — 1)

Because y > 1 and ({9 — {1) is the proper time, it follows
that (&5 — #1) > (t9 — t;), and we have recovered our
previous result for time dilation, Equation 1.8.

(b) Although event 1 and event 2 occur at the same
place in S, they are measured to occur at a separation of
xo — x1 in S" where

Xo — x1 = (yxo — yvlp) — (yxo — yvly)
yo(ty — ta)

This result is reasonable because it reduces to
u(t; — to) forv/c<<1

Can you explain why x5 — ] is negative?
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Exercise 5 Use the Lorentz transformation to derive the expression for length con-
traction. Note that the length of a moving object is determined by measuring the posi-
tions of both ends simultaneously.

Lorentz Velocity Transformation

The explicit form of the Lorentz velocity transformation follows immediately

upon substitution of G=y = 1/V1 — (v2/62) into Equation 1.21:

Uy — U

= G (1.28)

Uy =

where uy = dx'/dt' is the instantaneous velocity in the x direction measured in
S’ and u, = dx/dtis the velocity component u, of the object as measured in S.
Similarly, if the object has velocity components along y and z, the components
in S’ are

LAy dy _ Uy
BT T ydt— vdx/cd) Il — (u/D)] (1.99)
and . e

" Y = (u/ )]

When u, and v are both much smaller than ¢ (the nonrelativistic case),
we see that the denominator of Equation 1.28 approaches unity, and so
uy = u, — v. This corresponds to the Galilean velocity transformation. In the
other extreme, when u, = ¢, Equation 1.28 becomes

. c— v ol = (/o]

tx 1 — (cv/c?) 1— (v/¢)
From this result, we see that an object moving with a speed c¢ relative to an
observer in S also has a speed ¢ relative to an observer in S'— independent
of the relative motion of S and S’. Note that this conclusion is consistent
with Einstein’s second postulate, namely, that the speed of light must be ¢
with respect to all inertial frames of reference. Furthermore, the speed of
an object can never exceed ¢ That is, the speed of light is the “ultimate”
speed. We return to this point later in Chapter 2 when we consider the energy
of a particle.

To obtain u, in terms of u), replace v by —v in Equation 1.28 and inter-
change u, and u following the rule stated earlier for obtaining the inverse
transformation. This gives

’
Uy T v

T (/) (0

Uy =
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EXAMPLE 1.8 Relative Velocity of Spaceships

Two spaceships A and B are moving in opposite directions,
as in Figure 1.19. An observer on Earth measures the
speed of A to be 0.750¢ and the speed of B to be 0.850¢.
Find the velocity of B with respect to A.

S Y 8 (attached to A)
0.750¢ o,
— —
"
(0] x [0 x

Figure 1.19 (Example 1.8) Two spaceships A and B
move in opposite directions. The velocity of B relative to A
is less than ¢ and is obtained by using the relativistic veloc-
ity transformation.

Solution This problem can be solved by taking the S’
frame to be attached to spacecraft A, so that v = 0.750¢
relative to an observer on Earth (the S frame). Spacecraft
B can be considered as an object moving to the left with
a velocity u, = —0.850¢ relative to the Earth observer.
Hence, the velocity of B with respect to A can be ob-
tained using Equation 1.28:

, Uy — V —0.850¢ — 0.750¢
ul = =
x UV (—0.850¢) (0.750¢)
== 1= 3
¢ ¢
= —0.9771¢

The negative sign for u) indicates that spaceship B is mov-
ing in the negative x direction as observed by A. Note that
the result is less than ¢ That is, a body with speed less
than ¢ in one frame of reference must have a speed less
than ¢ in any other frame. If the incorrect Galilean velocity
transformation were used in this example, we would find
that uy = u, — v = —0.850¢ — 0.750¢ = —1.600¢, which is
greater than the universal limiting speed c.

EXAMPLE 1.9 The Speeding Motorcycle

Imagine a motorcycle rider moving with a speed of
0.800¢ past a stationary observer, as shown in Figure 1.20.
If the rider tosses a ball in the forward direction with a
speed of 0.700¢ with respect to himself, what is the speed
of the ball as seen by the stationary observer?

Solution In this situation, the velocity of the motorcy-
cle with respect to the stationary observer is v = 0.800c.
The velocity of the ball in the frame of reference of the
motorcyclist is u}, = 0.700¢. Therefore, the velocity, u,, of
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Figure 1.20 (Example 1.9) A motorcyclist moves past a
stationary observer with a speed of 0.800¢ and throws a
ball in the direction of motion with a speed of 0.700¢ rel-
ative to himself.

the ball relative to the stationary observer is
uy + v

1+ (ulw/c?)

_ 0.700¢ + 0.800¢
1 + [(0.700¢) (0.800¢) / ¢?]

Uy =

= 0.9615¢

Exercise 6 Suppose that the motorcyclist moving with a
speed 0.800¢ turns on a beam of light that moves away
from him with a speed of ¢ in the same direction as the
moving motorcycle. What would the stationary observer
measure for the speed of the beam of light?

Answer .

EXAMPLE 1.10 Relativistic Leaders of
the Pack!

Imagine two motorcycle gang leaders racing at relativis-
tic speeds along perpendicular paths from the local
pool hall, as shown in Figure 1.21. How fast does
pack leader Beta recede over Alpha’s right shoulder as
seen by Alpha?

Solution Figure 1.21 shows the situation as seen by a
stationary police officer located in frame S, who observes
the following:

Il
=]

Pack Leader Alpha
Pack Leader Beta

u, = 0.75¢ u
—0.90¢

u, =10 uy




"The maximum
speed is ¢ !"

Policeperson
atrestin S

¥, 4D ;%
Pack leader Beta\\

0.90¢

S

Figure 1.21 (Example 1.10) Two motorcycle pack lead-
ers, Alpha and Beta, blaze past a stationary police officer.
They are leading their respective gangs from the pool
hall along perpendicular roads.

To get Beta’s speed of recession as seen by Alpha, we take
S’ to move along with Alpha, as shown in Figure 1.22,
and we calculate uy and u’y for Beta using Equations 1.28
and 1.29:

0 — 0.75¢
1 — [(0)(0.75¢) /¢?]

[ Uy — 0 —
uy = =

1 — (u/c?)

u

= —0.75¢

y

T = (/D]
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A1 = [(0.7592/¢21(—0.900) 0.60
O

The speed of recession of Beta away from Alpha as
observed by Alpha is then found to be less than ¢ as re-
quired by relativity.

W = N? + (u)? = V(=075 + (—0.600)? = 0.96¢

Exercise 7 Calculate the classical speed of recession of
Beta from Alpha using the incorrect Galilean transforma-
tion.

Answer 1.2¢

. ’
"The maximum S
speed is ¢ !" .

Figure 1.22 (Example 1.10) Pack leader Alpha’s view
of things.

1.7 SPACETIME AND CAUSALITY

The views of space and time which I wish to lay before you have sprung from the soil of experi-
mental physics, and therein lies their strength. They arve radical. Henceforth space by itself, and
time by itself, are doomed to fade away into mere shadows, and only a union of the two will
preserve an independent reality. (Hermann Minkowski, 1908, in an address to the As-

sembly of German Natural Scientists and Physicians)

We have seen in relativity that space and time coordinates cannot be treated
separately. This is apparent from both the combination of space and time co-
ordinates required in the Lorentz coordinate transformation and in the varia-
tion of length and time intervals with inertial frame as shown in the time
dilation and length contraction formulas. A convenient way to express the en-
tanglement of space and time is with the concept of four-dimensional spacetime
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and spacetime diagrams introduced by the German mathematician Minkowski.?
While classical mechanics uses vectors with three components, relativistic me-
chanics can be elegantly expressed in terms of four vectors, corresponding to
the directions x, y, z, and ¢. However for simplicity we will confine our discus-
sion to motion in one dimension along the x-axis.

A Minkowski or spacetime diagram showing the complete history or
world line of a one-dimensional motion in frame S is shown in Figure 1.23.
Note that the quantity ¢t is plotted on the y-axis and the coordinate x is plot-
ted on the xaxis. The scale of distance is chosen to be the same for both
axes. That is, both vertical and horizontal axis ticks occur every meter, so
that a light signal starting out at x = 0, ¢ = 0 follows a 45° line. Point E
shows a point event described in frame S by the coordinates (x, ¢). Of
course, other inertial frames (S’) may be used to describe the event or plot
the world line and it is quite interesting that these other frames have
nonorthogonal ¢t and x" axes, as shown in Figure 1.23. (See Problem 40 for
proof of this statement.) To find the space and time coordinates of a given
event E in a specific frame, we draw lines parallel to the frame axes and
measure the intercepts with the specific frame axes, as shown in the figure.
Note too, that the velocity u, of a particle is inversely proportional to the
slope of its world line since

Ax ¢ (1.31)
Uy = ¢ — = .
* Act  slope
ot ¢t'  World line Light signal

0= i

(0] ]

Figure 1.23 A spacetime diagram showing the position of a particle in one dimen-
sion at consecutive times. The path showing the complete history of the particle is
called the world line of the particle. An event E has coordinates (x, ¢) in frame S and
coordinates (x', t') in S'.

SMinkowski was one of Einstein’s teachers, who, commenting on Einstein’s work on relativity, re-
putedly said something like, “I never would have expected that student to come up with anything
so clever.”
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1.7 SPACETIME AND CAUSALITY

Figure 1.24 Two events, E; and Ey, with coordinates (x,¢;) and (xo,t9) in frame S.

We stated earlier in this section that neither lengths nor time intervals by
themselves have any absolute meaning. Can we find a quantity that is absolute
or invariant and represents the correct union of length and time? Figure 1.24
shows a spacetime graph with two events, E; and Ey having coordinates (x;, #)
and (x9,f9) in frame S and coordinates (x],7]) and (x%,t5) in frame S'. Let us
define the quantity (As)? by

(As)2 = (cAD? — (Ax)2 = (c(tg — 11))% — (x9 — x1)? (1.32)

where As has the dimension of length and is called the spacetime interval be-
tween two events; it is analogous to distance in classical mechanics. If we now
evaluate the quantity

(As')? = (AF)? = (AX)? = (e(ty = 11))* = (xh — x)*

for the two events E; and E9 whose coordinates in S and S" are connected by
the Lorentz transforms xj = y(x; — vt;), #; = y(4; — vx;/c?), and so on, we
find after some algebra

(As)2 = (cA)? — (Ax)%2 = (As)? (1.33)

This important result says that the quantity As, the spacetime interval be-
tween two events, is an invariant and has the same value for all inertial
observers. We have found the quantity that correctly combines space and
time in an invariant way.

Minkowski diagrams can be used to classify the entire universe of spacetime
and clarify whether or not one event could be the cause of another. Figure
1.25 shows a spacetime diagram for one dimension with axes for two different
inertial frames S and S’, which share a common origin O at x = x" = 0 and
t =1 = 0. The lines x = *¢t are world lines of light pulses passing through
the origin and traveling in the positive or negative x direction. The regions
labeled past and future correspond to negative and positive values of time as
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ELSEWHERE

World line

Figure 1.25 Classification of one-dimensional spacetime into past, future, and else-
where regions. A particle with world line passing through O cannot reach regions
marked elsewhere.

judged from the present moment (now), which occurs at the origin. Regions
labeled “elsewhere” cannot be reached by an object whose world line passes
through O since to get to them would require a spacetime slope <1 or speed
greater than c.

The quantity (As)? = (¢A7)? — (Ax)? can be used to classify the interval
between two events and determine whether one event could be caused by
the other. To see this, consider the three pairs of events shown in Figure
1.26, where for simplicity the events V, A, and C have been taken to coin-
cide with the origin. For the two events V, W, (As)%2 > 0 since cAt> | Ax|.
Event V could be the cause of event W because some signal or influence

ct

Figure 1.26 Three pairs of events in spacetime: V,W; A,B; C,D. V could cause W.
A could cause B. C could not cause D.
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could cover the distance Ax from V to W with a speed less than ¢ and con-
nect the two events. The interval between V and W is called “timelike” for
reasons we won’t go into here, but it is important to note that since (As)? is
an invariant, if V causes W in frame S, it also causes W in any other inertial
frame. Thus, events linked causally in one frame are linked causally in all
other inertial frames.

For the two events A, B, (As)?> = 0 because ¢A¢= |Ax|. In this case the
world line of a light pulse connects point events A and B, and the spacetime
interval Asis said to be “lightlike.”

In the final case of events C, D, (As)2 < 0 because ¢At < |Ax|. This means
that even a signal propagating at the speed of light can’t cover the distance
|Ax| between the events C and D and so C cannot possibly be the cause of D in
any inertial frame whatsoever.

SUMMARY

The two basic postulates of the special theory of relativity are as follows:

e The laws of physics must be the same for all observers moving at constant
velocity with respect to one another.

e The speed of light must be the same for all inertial observers, indepen-
dent of their relative motion.

To satisfy these postulates, the Galilean transformations must be replaced by
the Lorentz transformations given by

X = y(x — vi) (1.23)
Yy =y (1.24)
72 =z (1.25)
i = y(t— %x> (1.26)
¢
where
1

’ V1 — (v2/¢2)

These equations relate an event with coordinates x, y, z, ¢ measured in S to the
same event with coordinates x', y’, z’, ¢ measured in S’, where it is assumed
that the primed system moves with a speed v along the xx'-axes.

The relativistic form of the velocity transformation is

Uy — U

TGS (1.28)

Uy =
where u, is the speed of an object as measured in the S frame and w is its
speed measured in the S’ frame.

If the object has velocity components u, and u, along y and z respectively,

the components in S are
u U,

Y1 = (uw/c%)]

= )]
Y1 = (u/c?)]

!

Uy

(1.29)

and wuj, =
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CHAPTER 1 RELATIVITY I

Some of the consequences of the special theory of relativity are as follows:

¢ Clocks in motion relative to an observer appear to be slowed down by a
factor 7. This is known as time dilation.

¢ Lengths of objects in motion appear to be contracted in the direction of
motion by a factor of 1/v. This is known as length contraction.

¢ Events that are simultaneous for one observer are not simultaneous for
another observer in motion relative to the first. This is known as the
relativity of simultaneity.

These three statements can be summarized by saying that duration, length,
and simultaneity are not absolute concepts in relativity.
The relativistic Doppler shift for electromagnetic waves emitted by a mov-

ing source is given by

Jobs = mﬁource

V1 + (v/¢)

(1.15)

where [y is the frequency measured by an observer approaching a light
source with relative speed v, and fource 1S the frequency as measured in the
source’s rest frame. The expression for the case of a receding source is
obtained by replacing v with —vin Equation 1.15.

The quantity As, the spacetime interval between two events, is an invariant
and has the same value for all inertial observers where As is defined by

(A9)Z = (cA)? — (Ax)2.
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QUESTIONS

1.

What two measurements will two observers in relative
motion always agree on?

. A spaceship in the shape of a sphere moves past an ob-

server on Earth with a speed of 0.5¢. What shape will
the observer see as the spaceship moves past?

. An astronaut moves away from Earth at a speed close to

the speed of light. If an observer on Earth could make
measurements of the astronaut’s size and pulse rate,
what changes (if any) would he or she measure? Would
the astronaut measure any changes?
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. Two identically constructed clocks are synchronized.

One is put in an eastward orbit around Earth while the
other remains on Earth. Which clock runs slower?
When the moving clock returns to Earth, will the two
clocks still be synchronized?

. Two lasers situated on a moving spacecraft are trig-

gered simultaneously. An observer on the spacecraft
claims to see the pulses of light simultaneously. What
condition is necessary in order that another observer
agrees that the two pulses are emitted simultaneously?



. When we say that a moving clock runs slower than a sta-
tionary one, does this imply that there is something
physically unusual about the moving clock?

. When we speak of time dilation, do we mean that time
passes more slowly in moving systems or that it simply
appears to do so?

. List some ways our day-to-day lives would change if the
speed of light were only 50 m/s.

. Give a physical argument to show that it is impossible
to accelerate an object of mass m to the speed of light,
even with a continuous force acting on it.

PROBLEMS

1.2 The Principle of Newtonian Relativity and
the Galilean Transformation

1

1.5

. In a lab frame of reference, an observer finds Newton’s

second law is valid in the form ».F= ma. Show that
actual
physical
forces

Newton’s second law is not valid in a reference
frame moving past the laboratory frame of Problem 1
with a constant acceleration a;. Assume that mass is an
invariant quantity and is constant in time.

. A 2000-kg car moving with a speed of 20 m/s collides
with and sticks to a 1500-kg car at rest at a stop sign.
Show that because momentum is conserved in the rest
frame, momentum is also conserved in a reference
frame moving with a speed of 10 m/s in the direction
of the moving car.

. A billiard ball of mass 0.3 kg moves with a speed of
5 m/s and collides elastically with a ball of mass 0.2 kg
moving in the opposite direction with a speed of 3 m/s.
Show that because momentum is conserved in the rest
frame, it is also conserved in a frame of reference mov-
ing with a speed of 2 m/s in the direction of the sec-
ond ball.

The Michelson-Morley Experiment

. An airplane flying upwind, downwind, and crosswind
shows the main principle of the Michelson—Morley
experiment. A plane capable of flying at speed ¢ in still
air is flying in a wind of speed v. Suppose the plane
flies upwind a distance L and then returns downwind
to its starting point. (a) Find the time needed to make
the round-trip and compare it with the time to fly
crosswind a distance L and return. Before calculating
these times, sketch the two situations. (b) Compute
the time difference for the two trips if L = 100 mi,
¢ = 500 mi/h, and v = 100 mi/h.

Consequences of Special Relativity

. With what speed will a clock have to be moving in order
to run at a rate that is one-half the rate of a clock at rest?
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It is said that Einstein, in his teenage years, asked the
question, “What would I see in a mirror if I carried it in
my hands and ran at the speed of light?”” How would
you answer this question?

Suppose astronauts were paid according to the time
spent traveling in space. After a long voyage at a
speed near that of light, a crew of astronauts returns
and opens their pay envelopes. What will their reac-
tion be?

What happens to the density of an object as its speed
increases, as measured by an Earth observer?

. How fast must a meter stick be moving if its length is

observed to shrink to 0.5 m?

. A clock on a moving spacecraft runs 1 s slower per day

relative to an identical clock on Earth. What is the rela-
tive speed of the spacecraft? (Hint: For v/¢ << 1, note
that y = 1 + v2/2¢2)

. A meter stick moving in a direction parallel to its length

appears to be only 75 cm long to an observer. What is
the speed of the meter stick relative to the observer?

. A spacecraft moves at a speed of 0.900¢. If its length is

L as measured by an observer on the spacecraft, what is
the length measured by a ground observer?

The average lifetime of a pi meson in its own frame of
reference is 2.6 X 1078 s. If the meson moves with a
speed of 0.95¢, what is (a) its mean lifetime as mea-
sured by an observer on Earth and (b) the average dis-
tance it travels before decaying, as measured by an ob-
server on Earth?

An atomic clock is placed in a jet airplane. The clock
measures a time interval of 3600 s when the jet moves
with a speed of 400 m/s. How much longer or shorter
a time interval does an identical clock held by an
observer on the ground measure? (Hint: For v/¢ << 1,
vy=1+ v2/2c2)

An astronaut at rest on Earth has a heartbeat rate of
70 beats/min. What will this rate be when she is trav-
eling in a spaceship at 0.90¢ as measured (a) by an ob-
server also in the ship and (b) by an observer at rest on
the Earth?

The muon is an unstable particle that spontaneously
decays into an electron and two neutrinos. If the
number of muons at ¢t = 0 is Nj, the number at time
tis given by N = Nye t/7, where 7 is the mean life-
time, equal to 2.2 us. Suppose the muons move at a
speed of 0.95¢ and there are 5.0 X 10* muons at
t=0. (a) What is the observed lifetime of the
muons? (b) How many muons remain after traveling
a distance of 3.0 km?

A rod of length L, moves with a speed v along the hor-
izontal direction. The rod makes an angle of 6, with
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respect to the x'-axis. (a) Show that the length of
the rod as measured by a stationary observer is given
by L= L[l — (v2/c®)cos® 6y]'/% (b) Show that the
angle that the rod makes with the x-axis is given by the
expression tan § = vy tan ). These results show that
the rod is both contracted and rotated. (Take the lower
end of the rod to be at the origin of the primed coordi-
nate system.)

The classical Doppler shift for light. A light source recedes
from an observer with a speed v that is small compared
with ¢. (a) Show that in this case, Equation 1.15 re-
duces to

A

f c

(b) Also show that in this case
EVN

A ¢

(Hint: Differentiate Af = ¢ to show that AA/A = —Af/f)
(c) Spectroscopic measurements of an absorption line
normally found at A = 397 nm reveal a redshift of
20 nm for light coming from a galaxy in Ursa Major.
What is the recessional speed of this galaxy?

Calculate, for the judge, how fast you were going in
miles per hour when you ran the red light because it
appeared Dopplershifted green to you. Take red light
to have a wavelength of 650 nm and green to have a
wavelength of 550 nm.

(a) How fast and in what direction must galaxy A be
moving if an absorption line found at 550 nm (green)
for a stationary galaxy is shifted to 450 nm (blue) for
A? (b) How fast and in what direction is galaxy B mov-
ing if it shows the same line shifted to 700 nm (red)?
Police radar detects the speed of a car (Fig. P1.18) as
follows: Microwaves of a precisely known frequency are
broadcast toward the car. The moving car reflects the
microwaves with a Doppler shift. The reflected waves
are received and combined with an attenuated version
of the transmitted wave. Beats occur between the two
microwave signals. The beat frequency is measured.
(a) For an electromagnetic wave reflected back to its
source from a mirror approaching at speed v, show
that the reflected wave has frequency

ct v

f fsource c— v
where fource 18 the source frequency. (b) When v is
much less than ¢, the beat frequency is much smaller
than the transmitted frequency. In this case use the
approximation f+ fource = 2 fource and show that the
beat frequency can be written as fyear = 20/A. (¢) What
beat frequency is measured for a car speed of 30.0 m/s

if the microwaves have frequency 10.0 GHz? (d) If the
beat frequency measurement is accurate to £5 Hz, how
accurate is the velocity measurement?

Image not available due to copyright restrictions

1.6 The Lorentz Transformation

19.

20.

21.

22.
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Two spaceships approach each other, each moving with
the same speed as measured by an observer on the
Earth. If their relative speed is 0.70¢, what is the speed of
each spaceship?

An electron moves to the right with a speed of 0.90¢ rela-
tive to the laboratory frame. A proton moves to the right
with a speed of 0.70¢ relative to the electron. Find the
speed of the proton relative to the laboratory frame.

An observer on Earth observes two spacecraft moving
in the same direction toward the Earth. Spacecraft A ap-
pears to have a speed of 0.50¢, and spacecraft B appears
to have a speed of 0.80¢. What is the speed of spacecraft
A measured by an observer in spacecraft B?

Speed of light in a moving medium. The motion of a
medium such as water influences the speed of light.
This effect was first observed by Fizeau in 1851. Con-
sider a light beam passing through a horizontal column
of water moving with a speed v. (a) Show that if the
beam travels in the same direction as the flow of water,
the speed of light measured in the laboratory frame is

given by
7i<l+nv/c>
" n \1+ v/nc



23.

where 7 is the index of refraction of the water. (Hint:
Use the inverse Lorentz velocity transformation and
note that the speed of light with respect to the moving
frame is given by ¢/n.) (b) Show that for v << ¢, the
preceding expression is in good agreement with
Fizeau’s experimental result:

c v

u~—+v-—
n n

This proves that the Lorentz velocity transformation

and not the Galilean velocity transformation is correct

for light.

An observer in frame S sees lightning simultaneously

strike two points 100 m apart. The first strike occurs

ADDITIONAL PROBLEMS

25

26.

27.

28.

29.

30.

. In 1962, when Scott Carpenter orbited Earth 22 times,
the press stated that for each orbit he aged 2 millionths
of a second less than if he had remained on Earth.
(a) Assuming that he was 160 km above Earth in an
eastbound circular orbit, determine the time differ-
ence between someone on Earth and the orbiting as-
tronaut for the 22 orbits. (b) Did the press report accu-
rate information? Explain.

The proper length of one spaceship is three times that of
another. The two spaceships are traveling in the same di-
rection and, while both are passing overhead, an Earth
observer measures the two spaceships to have the same
length. If the slower spaceship is moving with a speed of
0.35¢, determine the speed of the faster spaceship.

The pion has an average lifetime of 26.0 ns when at
rest. For it to travel 10.0 m, how fast must it move?

If astronauts could travel at v = 0.95¢, we on Earth
would say it takes (4.2/0.95) = 4.4 years to reach Alpha
Centauri, 4.2 lightyears away. The astronauts disagree.
(a) How much time passes on the astronauts’ clocks?
(b) What distance to Alpha Centauri do the astronauts
measure?

A spaceship moves away from Earth at a speed v and
fires a shuttle craft in the forward direction at a speed
v relative to the ship. The pilot of the shuttle craft
launches a probe at speed v relative to the shuttle craft.
Determine (a) the speed of the shuttle craft relative to
Earth, and (b) the speed of the probe relative to Earth.
An observer in a rocket moves toward a mirror at speed
v relative to the reference frame labeled by S in Figure
P1.30. The mirror is stationary with respect to S. A light
pulse emitted by the rocket travels toward the mirror
and is reflected back to the rocket. The front of the
rocket is a distance d from the mirror (as measured by
observers in S) at the moment the light pulse leaves the
rocket. What is the total travel time of the pulse as mea-
sured by observers in (a) the S frame and (b) the front
of the rocket?
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at x; = y; = z1 = 41 = 0 and the second at xp = 100 m,
yo = 29 = tp = 0. (a) What are the coordinates of these
two events in a frame S’ moving in the standard config-
uration at 0.70¢ relative to S? (b) How far apart are the
events in S'? (c) Are the events simultaneous in S'? If
not, what is the difference in time between the events,
and which event occurs first?

As seen from Earth, two spaceships A and B are
approaching along perpendicular directions. If A is
observed by an Earth observer to have velocity
u; = —0.90c and B to have a velocity u, = +0.90¢, find
the speed of ship A as measured by the pilot of B.

Mirror

v=0.8¢

fgf;:,: AN
—_—

Figure P1.30

. A physics professor on Earth gives an exam to her stu-

dents who are on a spaceship traveling at speed v relative
to Earth. The moment the ship passes the professor, she
signals the start of the exam. If she wishes her students to
have time 7; (spaceship time) to complete the exam,
show that she should wait a time (Earth time) of

e T ’l—v/c
0 1+ v/c

before sending a light signal telling them to stop. (Hint:
Remember that it takes some time for the second light
signal to travel from the professor to the students.)

. A yet-to-be-built spacecraft starts from Earth moving at

constant speed to the yet-to-be-discovered planet Retah,
which is 20 lighthours away from Earth. It takes 25 h (ac-
cording to an Earth observer) for a spacecraft to reach
this planet. Assuming that the clocks are synchronized at
the beginning of the journey, compare the time elapsed
in the spacecraft’s frame for this one-way journey with the
time elapsed as measured by an Earth-based clock.

3. Suppose our Sun is about to explode. In an effort to es-

cape, we depart in a spaceship at v = 0.80¢ and head
toward the star Tau Ceti, 12 lightyears away. When we
reach the midpoint of our journey from the Earth, we
see our Sun explode and, unfortunately, at the same in-
stant we see Tau Ceti explode as well. (a) In the space-
ship’s frame of reference, should we conclude that the
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two explosions occurred simultaneously? If not, which
occurred first? (b) In a frame of reference in which the
Sun and Tau Ceti are at rest, did they explode simulta-
neously? If not, which exploded first?

34. Two powerless rockets are on a collision course. The

rockets are moving with speeds of 0.800¢ and 0.600¢
and are initially 2.52 X 10'2 m apart as measured by
Liz, an Earth observer, as shown in Figure P1.34. Both
rockets are 50.0 m in length as measured by Liz.
(a) What are their respective proper lengths? (b) What
is the length of each rocket as measured by an observer
in the other rocket? (c) According to Liz, how long be-
fore the rockets collide? (d) According to rocket 1,
how long before they collide? (e) According to rocket

2,

how long before they collide? (f) If both rocket

crews are capable of total evacuation within 90 min
(their own time), will there be any casualties?

Rocket 1 Rocket 2
0.800¢ -0.600¢
—— —
S e
- =

I I

I I

I I

I I

I I

— 252x10%m —

I

I
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Figure P1.34

The identical twins Speedo and Goslo join a migration
from Earth to Planet X. It is 20.0 ly away in a reference
frame in which both planets are at rest. The twins, of
the same age, depart at the same time on different
spaceships. Speedo’s ship travels steadily at 0.950¢, and
Goslo’s at 0.750¢. Calculate the age difference between
the twins after Goslo’s spaceship reaches Planet X.
Which twin is the older?

Suzanne observes two light pulses to be emitted from
the same location, but separated in time by 3.00 us.
Mark sees the emission of the same two pulses sepa-
rated in time by 9.00 us. (a) How fast is Mark moving
relative to Suzanne? (b) According to Mark, what is the
separation in space of the two pulses?

An observer in reference frame S sees two events as si-
multaneous. Event A occurs at the point (50.0 m, 0, 0)
at the instant 9:00:00 Universal time, 15 January 2001.
Event B occurs at the point (150 m, 0, 0) at the same
moment. A second observer, moving past with a veloc-

ity

of 0.800¢ i, also observes the two events. In her refer-

ence frame S’, which event occurred first and what
time elapsed between the events?
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A spacecraft is launched from the surface of the Earth
with a velocity of 0.600¢ at an angle of 50.0° above the
horizontal, positive x-axis. Another spacecraft is moving
past with a velocity of 0.700¢ in the negative x direction.
Determine the magnitude and direction of the velocity
of the first spacecraft as measured by the pilot of the
second spacecraft.

An Earth satellite used in the Global Positioning Sys-
tem moves in a circular orbit with period 11 h 58 min.
(a) Determine the radius of its orbit. (b) Determine its
speed. (c) The satellite contains an oscillator produc-
ing the principal nonmilitary GPS signal. Its frequency
is 1 575.42 MHz in the reference frame of the satellite.
When it is received on the Earth’s surface, what is the
fractional change in this frequency due to time dila-
tion, as described by special relativity? (d) The gravita-
tional blueshift of the frequency according to general
relativity is a separate effect. The magnitude of that
fractional change is given by

Ar _ Al

f - 2
where AU/ m s the change in gravitational potential en-
ergy per unit mass between the two points at which the
signal is observed. Calculate this fractional change in fre-
quency. (e) What is the overall fractional change in fre-
quency? Superposed on both of these relativistic effects
is a Doppler shift that is generally much larger. It can be

a redshift or a blueshift, depending on the motion of a
particular satellite relative to a GPS receiver (Fig. P1.39).

mc

Image not available due to copyright restrictions

Show that the S’ axes, x" and ¢, are nonorthogonal in
a spacetime diagram. Assume that the S and S’ inertial
frames move as shown in Figure 1.2 and that t =t = 0
when x = x' = 0. (Hint: First use the fact that the cf'-
axis is the world line of the origin of S’ to show that the
cf’-axis is inclined with respect to the ct-axis. Next note
that the world line of a light pulse moving in the +x
direction starting out at x = 0 and ¢ = 0 is described
by the equation x = +¢tin Sand x’ = ¢’ in §').
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Chapter Outline
2.1 Relativistic Momentum and the 2.5 General Relativity
Relativistic Form of Newton’s Laws Summary
2.2 Relativistic Energy WEB EssAY  The Renaissance of General
2.3 Mass as a Measure of Energy Relativity, by Clifford M. Will

2.4 Conservation of Relativistic
Momentum and Energy

I this chapter we extend the theory of special relativity to classical mechan-
ics, that is, we give relativistically correct expressions for momentum, Newton’s
second law, and the famous equivalence of mass and energy. The final section,
on general relativity, deals with the physics of accelerating reference frames
and Einstein’s theory of gravitation.

2.1 RELATIVISTIC MOMENTUM AND
THE RELATIVISTIC FORM OF
NEWTON’S LAWS

The conservation of linear momentum states that when two bodies collide, the
total momentum remains constant, assuming the bodies are isolated (that is,
they interact only with each other). Suppose the collision is described in a
reference frame S in which momentum is conserved. If the velocities of the
colliding bodies are calculated in a second inertial frame S’ using the Lorentz
transformation, and the classical definition of momentum p = mu applied,
one finds that momentum is not conserved in the second reference frame.
However, because the laws of physics are the same in all inertial frames,
momentum must be conserved in all frames if it is conserved in any one. This
application of the principle of relativity demands that we modify the classical
definition of momentum.

To see how the classical form p = mu fails and to determine the correct
relativistic definition of p, consider the case of an inelastic collision
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Q> =0 o 8
m U v om V=0
Before After

Momentum is conserved according to S
Prefore = mv+ m(=v) =0

Patter = 0
1 2 1 2
Q ~—=0 o ~—QQ
m  vi=0 vy m Vv’
Before After
Momentum is not conserved according to §’
D'before = _=2mv
1+ 112/02

,
P ater = —2mv

Figure 2.1 (a) An inelastic collision between two equal clay lumps as seen by an
observer in frame S. (b) The same collision viewed from a frame S’ that is moving to
the right with speed v with respect to S.

between two particles of equal mass. Figure 2.1a shows such a collision for
two identical particles approaching each other at speed v as observed in an
inertial reference frame S. Using the classical form for momentum, p = mu
(we use the symbol u for particle velocity rather than v, which is reserved
for the relative velocity of two reference frames), the observer in S finds
momentum is conserved as shown in Figure 2.la. Suppose we now view
things from an inertial frame S’ moving to the right with speed v relative to
S. In S’ the new speeds are v}, vy and V' (see Fig. 2.1b). If we use the Lorentz
velocity transformation

Uy — U

1 — (uw/c?)

Uy =

to find v}, v5 and V', and the classical form for momentum, p = mu, will
momentum be conserved according to the observer in S'? To answer this ques-
tion we first calculate the velocities of the particles in S’ in terms of the given
velocities in S.

. v — v _ v— v
T Ty 1 - (0D
, U9 — U B —v— v . —2v
T T /) 1 -1~ @/3 1+ (/D)
V—ov 0—v

A— j— j—

1= (Ww/c®) 1 [(0)v/c*]

Checking for momentum conservation in S’, we have
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2.1 RELATIVISTIC MOMENTUM AND THE RELATIVISTIC FORM OF NEWTON'’S LAWS

—2v } _ —2mv

piaefore = mvy + mvy = m(0) + m |:1 n (‘U2/62) 1+ (‘02/62)

p"dfter =2mV' = —2mv

Thus, in the frame S', the momentum before the collision is not equal to the
momentum after the collision, and momentum is not conserved.

It can be shown (see Example 2.6) that momentum is conserved in both S
and S’, (and indeed in all inertial frames), if we redefine momentum as

mua

P="T—- - (2.1)

V1 — (u2/¢?)

where u is the velocity of the particle and m is the proper mass, that is, the
mass measured by an observer at rest with respect to the mass.! Note that
when u is much less than ¢, the denominator of Equation 2.1 approaches
unity and p approaches mu. Therefore, the relativistic equation for p
reduces to the classical expression when wu is small compared with e
Because it is a simpler expression, Equation 2.1 is often written p = ymu,

where y = 1/V1 — (u%/¢?). Note that this y has the same functional form as
the vy in the Lorentz transformation, but here 7y contains u, the particle
speed, while in the Lorentz transformation, 7y contains v, the relative speed
of the two frames.

The relativistic form of Newton’s second law is given by the expression

_4dp _ 4
F = 5 pr (ymu) (2.2)

where p is given by Equation 2.1. This expression is reasonable because it
preserves classical mechanics in the limit of low velocities and requires the
momentum of an isolated system (F = 0) to be conserved relativistically
as well as classically. It is left as a problem (Problem 3) to show that the rela-
tivistic acceleration a of a particle decreases under the action of a constant force
applied in the direction of u, as

F
a=—(1-— u2/02)?’/2
m

From this formula we see that as the velocity approaches ¢, the acceleration
caused by any finite force approaches zero. Hence, it is impossible to acceler-
ate a particle from rest to a speed equal to or greater than c.

In this book we shall always take m to be constant with respect to speed, and we call m the speed
invariant mass, or proper mass. Some physicists refer to the mass in Equation 2.1 as the rest mass,
mg, and call the term my/\1 — (u?/c?) the relativistic mass. Using this description, the relativistic
mass is imagined to increase with increasing speed. We exclusively use the invariant mass m
because we think it is a clearer concept and that the introduction of relativistic mass leads to no
deeper physical understanding.
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CHAPTER 2 RELATIVITY II

EXAMPLE 2.1 Momentum of an Electron

An electron, which has a mass of 9.11 X 1073 kg, moves
with a speed of 0.750¢ Find its relativistic momentum
and compare this with the momentum calculated from
the classical expression.

is given by F = gu X B. If u is perpendicular to B, the
force is radially inward, and the particle moves in a cir-
cle of radius R with |u| constant. From Equation 2.2 we
have

Solution Using Equation 2.1 with u = 0.750¢, we have dp d

F="P_ ¢
a a ™
mu

r= 4/1 — (u2/02) Solution Because the magnetic force is always per-

_s1 ; 8 pendicular to the velocity, it does no work on the parti-
= (9.11 X 10 kg) (0.750 X 3.00 X 10° m/s) cle, and hence the speed, u, and 7y are both constant

\/1 — [(0.750¢)%/¢%] with time. Thus, the magnitude of the force on the
3.10 X 10~22 kg-m/s particle is

The incorrect classical expression would give F=ym ‘ﬂ (2.3)
dt

momentum = mu = 2.05 X 10722 kg-m/s

Substituting F'= quB and |du/dt| = u?/R (the usual defi-
nition of centripetal acceleration) into Equation 2.3, we
can solve for p = ymu. We find

Hence, for this case the correct relativistic result is 50%
greater than the classical result!

EXAMPLE 2.2 An Application of the
Relativistic Form of F = dp/dt:
The Measurement of the
Momentum of a High-Speed
Charged Particle

p = ymu = gBR (2.4)

Equation 2.4 shows that the momentum of a relativistic
particle of known charge ¢ may be determined by mea-
suring its radius of curvature R in a known magnetic
field, B. This technique is routinely used to determine
the momentum of subatomic particles from photographs
of their tracks in space.

Suppose a particle of mass m and charge ¢ is injected
with a relativistic velocity u into a region containing a
magnetic field B. The magnetic force F on the particle

2.2 RELATIVISTIC ENERGY

We have seen that the definition of momentum and the laws of motion required
generalization to make them compatible with the principle of relativity. This
implies that the relativistic form of the kinetic energy must also be modified.

To derive the relativistic form of the work—energy theorem, let us start with
the definition of work done by a force /"and make use of the definition of rela-
tivistic force, Equation 2.2. That is,

Xo Xo d
WZJ FdeJ _de (2.5)
X x di

where we have assumed that the force and motion are along the x-axis.
To perform this integration and find the work done on a particle or the
relativistic kinetic energy as a function of the particle velocity w, we first

evaluate dp/ dt:
m| ==
dp d mu dt

== = (2.6)

A dt T = (272 (1 — (/AP
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Substituting this expression for dp/dt and dx = u dtinto Equation 2.5 gives

m|—— |udt
fo di fu
W= =m
X1 [1 - 0

(u?/ 172
where we have assumed that the particle is accelerated from rest to some final
velocity u. Evaluating the integral, we find that

WZ(/‘Q
WwW=——

V1 — (12/¢2)
Recall that the work—energy theorem states that the work done by all forces
acting on a particle equals the change in kinetic energy of the particle.
Because the initial kinetic energy is zero, we conclude that the work Win Eq.
2.7 is equal to the relativistic kinetic energy K, that is,

u du
[1— (u?/?)]3/2

m6‘2 (27)

mc2
K=——"——"——

V1 — (u%/c2)

At low speeds, where u/¢ << 1, Equation 2.8 should reduce to the classical
expression K = %mu(z. We can check this by using the binomial expansion
1—-x%)"12=1+ %xQ + - -+, for x << 1, where the higher-order powers of x
are ignored in the expansion. In our case, x = u/¢, so that

1 w2\ V2 1 w?
‘,1—(’112/62) C 2

¢
Substituting this into Equation 2.8 gives

; 1 u? 1
mc2<1 +—u—2+ )— me® = — mu?
2 ¢ 2

me? (2.8)

K=

which agrees with the classical result. A graph comparing the relativistic and
nonrelativistic expressions for u as a function of K is given in Figure 2.2.
Note that in the relativistic case, the particle speed never exceeds ¢, regard-

u
2.0¢ |- Nonrelativistic
case
1.5¢ |- u = N2K/m
1.0c F——f— e ——-
Relativistic  u = ¢ V1 — (K/mc® + 1)=2

0.5¢ — case

| | | |

05 10 15 20 K/mc®

Figure 2.2 A graph comparing the relativistic and nonrelativistic expressions for
speed as a function of kinetic energy. In the relativistic case, u is always less than c.
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Definition of total energy

Mass-energy equivalence

Energy-momentum relation

less of the kinetic energy, as is routinely confirmed in very high energy par-
ticle accelerator experiments. The two curves are in good agreement when
u << c.

It is instructive to write the relativistic kinetic energy in the form

K= ymc®> — me? (2.9)
where

1
. —
N1 — w2/

The constant term mc?, which is independent of the speed, is called the rest
energy of the particle. The term ymc?, which depends on the particle speed,
is therefore the sum of the kinetic and rest energies. We define ymec? to be the
total energy £, that is,

E = yme®> = K + mc? (2.10)

The expression £ = ymc? is Einstein’s famous mass—energy equivalence
equation, which shows that mass is a measure of the total energy in all
forms. Although we have been considering single particles for simplicity,
Equation 2.10 applies to macroscopic objects as well. In this case it has the re-
markable implication that any kind of energy added to a “brick” of matter—
electric, magnetic, elastic, thermal, gravitational, chemical —actually increases
the mass! Several end-of-chapter questions and problems explore this idea
more fully. Another implication of Equation 2.10 is that a small mass corre-
sponds to an enormous amount of energy because ¢ is a very large number.
This concept has revolutionized the field of nuclear physics and is treated in
detail in the next section.

In many situations, the momentum or energy of a particle is measured
rather than its speed. It is therefore useful to have an expression relating
the total energy FE to the relativistic momentum p. This is accomplished using
E = ymc® and p = ymu. By squaring these equations and subtracting, we can
eliminate u (Problem 7). The result, after some algebra, is

E% = p262 + (mc?)? (2.11)

When the particle is at rest, p = 0, and so we see that E = mc?. That is, the to-
tal energy equals the rest energy. For the case of particles that have zero mass,

such as photons (massless, chargeless particles of light), we set m = 0 in Equa-
tion 2.11, and find

E= pc (2.12)

This equation is an exact expression relating energy and momentum for pho-
tons, which always travel at the speed of light.

Finally, note that because the mass m of a particle is independent of its mo-
tion, m must have the same value in all reference frames. On the other hand,
the total energy and momentum of a particle depend on the reference frame
in which they are measured, because they both depend on velocity. Because m
is a constant, then according to Equation 2.11 the quantity E? — p?¢? must
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tron is 0.511 MeV together with E = ymc? gives

B mec? B 0.511 MeV
ST AL - [(0.850%/¢
= 1.90(0.511 MeV) = 0.970 MeV

E

The kinetic energy is obtained by subtracting the rest
energy from the total energy:

K=E— me? = 0970 MeV — 0.511 MeV = 0.459 MeV

EXAMPLE 2.4 The Energy of a Speedy Proton

The total energy of a proton is three times its rest
energy.
(a) Find the proton’s rest energy in electron volts.

Solution

rest energy = mpc2
= (1.67 X 10727 kg) (3.00 X 108 m/s)?
= (1.50 X 10719]) (1 eV/1.60 X 107197)

= 938 MeV

(b) With what speed is the proton moving?

Solution Because the total energy £ is three times the
rest energy, £ = yme? gives

2.2 RELATIVISTIC ENERGY 47

have the same value in all reference frames. That is, E2? — [)262 1S invariant
under a Lorentz transformation.

When dealing with electrons or other subatomic particles, it is convenient
to express their energy in electron volts (eV), since the particles are usually
given this energy by acceleration through a potential difference. The conver-
sion factor is

l1ev=160x10"1]
For example, the mass of an electron is 9.11 X 10731 kg. Hence, the rest en-
ergy of the electron is
2 _ -31 8 2 _ —14
MeC (9.11 X 107" kg) (3.00 X 10° m/s) 8.20 X 107 *]J
Converting this to electron volts, we have
mec? = (8.20 X 1071 ]) (1 eV/1.60 X 10719]) = 0.511 MeV

where 1 MeV = 10% eV. Finally, note that because mec2 = 0.511 MeV, the mass
of the electron may be written m. = 0.511 MeV/ 2, accounting for the prac-
tice of measuring particle masses in units of MeV/ 2.

EXAMPLE 2.3 The Energy of a Speedy Electron

An electron has a speed u = 0.850¢. Find its total energy m.c?

. . . _ 92 _ P
and kinetic energy in electron volts. E=3mpyc = —F———
VI = (u?/¢?)
Solution Using the fact that the rest energy of the elec- 1

V1 — (u2/c?)

Solving for u gives

2
(-5)-
C

=283 X 10°m/s
(c) Determine the Kkinetic energy of the proton in
electron volts.
Solution
- _ 2 2 _ 2 — 2
K=E— my* = 3mpe Mpc™ = 2mye

Because mpc? = 938 MeV, K = 1876 MeV.
(d) What is the proton’s momentum?

Solution We can use Equation 2.11 to calculate the
momentum with £ = SmPL‘Q:

E?2 = ])262 + (mP02)2 = (31%1[,62)2

PPt = 9(mp)? = (mpc®)? = 8(myp?)?

mpc 938 MeV MeV
=18 p — s Ce):%so—f

Note that the unit of momentum is left as MeV/¢ for
convenience.
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Conservation of mass—energy

2.3 MASS AS A MEASURE OF ENERGY

The equation £ = ymc? as applied to a particle suggests that even when a parti-
cle is at rest (y = 1) it still possesses enormous energy through its mass. The
clearest experimental proof of the equivalence of mass and energy occurs in
nuclear and elementary particle interactions in which both the conversion of
mass into energy and the conversion of energy into mass take place. Because of
this convertibility from the currency of mass into the currency of energy, we
can no longer accept the separate classical laws of the conservation of mass and
the conservation of energy; we must instead speak of a single unified law, the
conservation of mass—energy. Simply put, this law requires that the sum of
the mass—energy of a system of particles before interaction must equal
the sum of the mass—energy of the system after interaction where the
mass-energy of the ith particle is defined as the total relativistic energy

m;c 2

N1 — (u7/c?)
To understand the conservation of mass—energy and to see how the relativistic
laws possess more symmetry and wider scope than the classical laws of momen-
tum and energy conservation, we consider the simple inelastic collision
treated earlier.

As one can see in Figure 2.1a, classically momentum is conserved but kinetic
energy is not because the total kinetic energy before collision equals mu? and
the total kinetic energy after is zero (we have replaced the v shown in Figure
2.1 with u). Now consider the same two colliding clay lumps using the relativis-
tic mass—energy conservation law. If the mass of each lump is m, and the mass
of the composite object is M, we must have

Ei:

Ebcforc = Eaflcr

2 2

mc

+
V1= (u/e® N1 - (u¥/c?)

mc
= Mc?

or

M= —2m (2.13)

V1 — (u%/c?)
Because V1 — (u%/¢?) < 1, the composite mass M is greater than the sum
of the two individual masses! What’s more, it is easy to show that the mass
increase of the composite lump, AM = M — 2m, is equal to the sum of the
incident kinetic energies of the colliding lumps (2K) divided by ¢:

K 2
AM = 2—2 _ 2 (L - mc2> (2.14)

c 62 «[1 _ (uQ/CQ)

Thus, we have an example of the conversion of kinetic energy to mass, and the
satisfying result that in relativistic mechanics, kinetic energy is not lost in an
inelastic collision but shows up as an increase in the mass of the final composite
object. In fact, the deeper symmetry of relativity theory shows that both relativis-
tic mass—energy and momentum are always conserved in a collision, whereas classical
methods show that momentum is conserved but kinetic energy is not unless the
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collision is perfectly elastic. Indeed, as we show in Example 2.6, relativistic
momentum and energy are inextricably linked because momentum conserva-
tion only holds in all inertial frames if mass—energy conservation also holds.

EXAMPLE 2.5

(a) Calculate the mass increase for a completely inelastic
head-on collision of two 5.0-kg balls each moving toward
the other at 1000 mi/h (the speed of a fast jet plane).
(b) Explain why measurements on macroscopic objects
reinforce the relativistically incorrect beliefs that mass is
conserved (M = 2m) and that kinetic energy is lost in an
inelastic collision.

Solution (a) v = 1000 mi/h = 450 m/s, so

u _ 45X10°m/s _ 15 X 10-5
¢ 3.0 X 108 m/s '

Because u?/¢2 << 1, substituting
1 1

e — O

V1 — (uQ/CQ) 2 ¢

in Equation 2.14 gives

9

no

u

AM=2m<

1
L)
V1 — (u2/c2)

~om(1+——5—1
2m< 2

= (5.0kg) (1.5 X 10702 = 1.1 X 10~ kg

(b) Because the mass increase of 1.1 X 10711 kg is an un-
measurably minute fraction of 2m (10 kg), it is quite nat-
ural to believe that the mass remains constant when
macroscopic objects suffer an inelastic collision. On the
other hand, the change in kinetic energy from mu? to 0
is so large (10%]) that it is readily measured to be lost in
an inelastic collision of macroscopic objects.

Exercise 1 Prove that AM = 2AK/¢? for a completely
inelastic collision, as stated.

EXAMPLE 2.6
Show that use of the relativistic definition of momentum
mu

P V1 — (u2/c?)

leads to momentum conservation in both S and S’ for
the inelastic collision shown in Figure 2.1.

Solution In frame S:
Pbefore = ymv + ym(—=v) =0

Patier = YMV = (yM)(0) = 0

Hence, momentum is conserved in S. Note that we have
used M as the mass of the two combined masses after the
collision and allowed for the possibility in relativity that
M is not necessarily equal to 2m.

In frame S’:

Bhtore = ymoi + ymoh = — @

m —2v
+ X[ —=
N1 = [=20/1 + (0 H]H(A/ ) (1 + vﬁ/ﬁ)
After some algebra, we find
m _om(1 + %/ ¢2)
9, 9119 o — 2/ 02
WL = 2o/ + (/s 0 m v/
and we obtain
, _om(1 + 2/ ¢?) ( —2v > _ —2mv
Poefore = =8, T\ T 1 2/02 (1 — v2/¢?)
M(—v) B —Muv
V1= (=02 V1= v/
To show that momentum is conserved in S’, we use the fact
that M is not simply equal to 2m in relativity. As shown, the
combined mass, M, formed from the collision of two parti-
cles, each of mass m moving toward each other with speed
v, is greater than 2m. This occurs because of the equiva-
lence of mass and energy, that is, the kinetic energy of the
incident particles shows up in relativity theory as a tiny
increase in mass, which can actually be measured as ther-

mal energy. Thus, from Equation 2.13, which results from
imposing the conservation of mass—energy, we have

2m
N1 — (¥2/¢2)

Substituting this result for Minto pafer, we obtain

p;fter = 'YMV, =

M=

Dhiter = 2m —v
L= () V1 - ()
—2mu

T D Dhefore

Hence, momentum is conserved in both S and S,
provided that we use the correct relativistic definition of
momentum, p = ymu, and assume the conservation of
mass—energy.
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Fission

The absence of observable mass changes in inelastic collisions of macro-
scopic objects impels us to look for other areas to test this law, where par-
ticle velocities are higher, masses are more precisely known, and forces
are stronger than electrical or mechanical forces. This leads us to consider
nuclear reactions, because nuclear masses can be measured very precisely
with a mass spectrometer, nuclear forces are much stronger than electrical
forces, and decay products are often produced with extremely high
velocities.

Perhaps the most direct confirmation of the conservation of mass—
energy occurs in the decay of a heavy radioactive nucleus at rest into several
lighter particles emitted with large kinetic energies. For such a nucleus
of mass M undergoing fission into particles with masses M;, My, and Ms
and having speeds u;, ug, and ug, conservation of total relativistic energy
requires

_ M162 ]\4262 + M36‘2
V1-(d/d  N1- g/ 1- (/D
Because the square roots are all less than 1, M > M; + My + Mg and the loss

of mass, M — (M; + My + Ms), appears as energy of motion of the products.
This disintegration energy released per fission is often denoted by the sym-

Mc?

(2.15)

bol Q and can be written for our case as

Q= [M— (M + Mg + M3)]c®> = Amc?

EXAMPLE 2.7 A Fission Reaction

An excited 238U nucleus decays at rest into Rb, 113Cs,
and several neutrons, {n. (a) By conserving charge and
the total number of protons and neutrons, write a bal-
anced reaction equation and determine the number of
neutrons produced. (b) Calculate by how much the
combined “offspring” mass is less than the “parent”
mass. (c) Calculate the energy released per fission.
(d) Calculate the energy released in kilowatt hours when
1 kg of uranium undergoes fission in a power plant that
is 40% efficient.

Solution (a) In general, an element is represented by
the symbol 4X, where X is the symbol for the element, A
is the number of neutrons plus protons in the nucleus
(mass number), and Z is the number of protons in the
nucleus (atomic number). Conserving charge and num-
ber of nucleons gives

36 90 143 1
292U — 37Rb + 55CS + 3011

So three neutrons are produced per fission.

(b) The masses of the decay particles are given in
Appendix B in terms of atomic mass units, u, where
1u=1.660 % 10727 kg = 931.5 MeV/ 2.
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(2.16)

Am= My — (Mgp, + Mcs + 3my) = 236.045563 u
—(89.914811 u + 142.927220 u
+ (3)(1.008665) u)
= 0.177537 u = 2.9471 X 10~ kg

Therefore, the reaction products have a combined mass
that is about 3.0 X 10728 kg less than the initial uranium
mass.

(c) The energy given off per fission event is just Amc?.
This is most easily calculated if Am is first converted to
mass units of MeV/¢2. Because 1 u = 931.5 MeV/CQ,

Am = (0177537 u) (931.5 MeV/c?)
= 165.4 MeV/c?
: MeV
Q= Ame? = 165.4 —5— ¢? = 165.4 McV

C

-165.4 MeV

(d) To find the energy released by the fission of 1 kg of
uranium we need to calculate the number of nuclei, N,
contained in 1 kg of 26U,
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N (6.02 X 1023 nuclei/mol) (1000 g = 1.68 X 1026 MeV
(236 g/mol) = (1.68 X 1026 MeV) (4.45 X 10~20 kWh/MeV)
= 2.55 X 1024 nuclei = 7.48 X 10 kWh
The total energy produced, E, is Exercise 2 How long will this amount of energy keep a
E = (efficiency) NQ 100-W lightbulb burning?
= (0.40) (255 X 102* nuclei) (165 MeV/nucleus) Answer =~ 8500 years.

We have considered the simplest case showing the conversion of mass
to energy and the release of this nuclear energy: the decay of a heavy
unstable element into several lighter elements. However, the most common
case is the one in which the mass of a composite particle is less than the
sum of the particle masses composing it. By examining Appendix B, you
can see that the mass of any nucleus is less than the sum of its component
neutrons and protons by an amount Am. This occurs because the nuclei
are stable, bound systems of neutrons and protons (bound by strong at-
tractive nuclear forces), and in order to disassociate them into separate
nucleons an amount of energy Amc? must be supplied to the nucleus.
This energy or work required to pull a bound system apart, leaving its
component parts free of attractive forces and at rest, is called the
binding energy, BE. Thus, we describe the mass and energy of a bound
system by the equation

n
Mc* + BE = X myc? (2.17)
i=1

where M is the bound system mass, the m;’s are the free component particle
masses, and 7 is the number of component particles. Two general com-
ments are in order about Equation 2.17. First, it applies quite generally to
any type of system bound by attractive forces, whether gravitational, electri-
cal (chemical), or nuclear. For example, the mass of a water molecule is less
than the combined mass of two free hydrogen atoms and a free oxygen
atom, although the mass difference cannot be directly measured in this
case. (The mass difference can be measured in the nuclear case because the
forces and the binding energy are so much greater.) Second, Equation 2.17
shows the possibility of liberating huge quantities of energy, BE, if one reads
the equation from right to left; that is, one collides nuclear particles with a
small but sufficient amount of kinetic energy to overcome proton repulsion
and fuse the particles into new elements with less mass. Such a process is
called fusion, one example of which is a reaction in which two deuterium
nuclei combine to form a helium nucleus, releasing 23.9 MeV per fusion.
(See Chapter 14 for more on fusion processes.) We can write this reaction
schematically as follows:

fH + $H — $He + 23.9 MeV
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EXAMPLE 2.8

(a) How much lighter is a molecule of water than two
hydrogen atoms and an oxygen atom? The binding en-
ergy of water is about 3 eV. (b) Find the fractional loss of
mass per gram of water formed. (c) Find the total energy
released (mainly as heat and light) when 1 gram of water
is formed.

Solution (a) Equation 2.17 may be solved for the mass
difference as follows:

BE _ 3eV
Am = (mH + my + m()) — MHQO = (2 = 62
5.0 eV) (1.6 X 10719 /eV
_ (80eW)( JV) _ 55x10%1kg

(3.0 X 108 m/s)?

(b) To find the fractional loss of mass per molecule
we divide Am by the mass of a water molecule, My, =
18u = 3.0 X 10726 kg:

Am 53 x10%°kg

=1.8x 10710
Mp,o 3.0 X107 %kg

Because the fractional loss of mass per molecule is
the same as the fractional loss per gram of water formed,
1.8 X 10710 g of mass would be lost for each gram of
water formed. This is much too small a mass to be mea-
sured directly, and this calculation shows that nonconser-
vation of mass does not generally show up as a measur-
able effect in chemical reactions.

(c) The energy released when 1 gram of HyO is formed
is simply the change in mass when 1 gram of water is
formed times ¢

E=Ame® = (1.8 X 10713 kg) (3.0 X 103 m/s)% =~ 16 k]

This energy change, as opposed to the decrease in
mass, is easily measured, providing another case similar
to Example 2.5 in which mass changes are minute but
energy changes, amplified by a factor of ¢?, are easily
measured.

2.4 CONSERVATION OF RELATIVISTIC
MOMENTUM AND ENERGY

So far we have considered only cases of the conservation of mass—energy. By
far, however, the most common and strongest confirmation of relativity theory
comes from the daily application of relativistic momentum and energy conser-
vation to elementary particle interactions. Often the measurement of momen-
tum (from the path curvature in a magnetic field—see Example 2.2) and
kinetic energy (from the distance a particle travels in a known substance
before coming to rest) are enough when combined with conservation of
momentum and mass—energy to determine fundamental particle properties
of mass, charge, and mean lifetime.

EXAMPLE 2.9 Measuring the Mass
of the 7t Meson

The 7 meson (also called the pion) is a subatomic parti-
cle responsible for the strong nuclear force between pro-
tons and neutrons. It is observed to decay at rest into a
u™ meson (muon) and a neutrino,? denoted v. Because
the neutrino has no charge and little mass (talk about
elusive!), it leaves no track in a bubble chamber. (A bub-
ble chamber is a large chamber filled with liquid hydro-
gen that shows the tracks of charged particles as a series
of tiny bubbles.) However, the track of the charged muon

is visible as it loses kinetic energy and comes to rest (Fig.
2.3). If the mass of the muon is known to be 106 MeV/cQ,
and the kinetic energy, K, of the muon is measured to be
4.6 MeV from its track length, find the mass of the 7.

Solution The decay equation is 7" — u* + v. Con-
serving energy gives

E,=E,+E,

2Neutrino, from the Italian, means “little tiny neutral one.” Following this practice, neutron
should probably be neutrone (pronounced noo-tron-eh)or “great big neutral one.”
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Figure 2.3 (Example 2.9) Decay of the pion at rest into
a neutrino and a muon.

Because the pion is at rest when it decays, and the neu-
trino has negligible mass,

mae® =\ (mue®)? + (p2c?) + poc (2.18)

Conserving momentum in the decay yields p, = p,. Sub-
stituting the muon momentum for the neutrino momen-
tum in Equation 2.18 gives the following expression for
the rest energy of the pion in terms of the muon’s mass
and momentum:

mac? =\ (mu®)? + (pic?) + puc (2.19)
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Finally, to obtain p, from the measured value of the
muon’s kinetic energy, K, we start with Equation 2.11,
E2 = p2c* + (my,c?)?, and solve it for pie?:
pﬁcQ = Fﬁ - (m“cz)z = (Ku + muc?)2 - (m“CQ)Z
= Kﬁ + QK,,JLm,,,c2
Substituting this expression for p%c? into Equation 2.19

yields the desired expression for the pion mass in terms
of the muon’s mass and kinetic energy:

ch2 = \/(mic4 + Kﬁ + QKMmMC2
2 2
+NK + 2K, m,¢

Finally, substituting m,,c* = 106 MeV and K, = 4.6 MeV
into Equation 2.20 gives

(2.20)

muc2 =111 MeV + 31 MeV = 1.4 X 102 MeV
Thus, the mass of the pion is
m,; = 140 MeV/ ¢?

This result shows why this particle is called a meson;
it has an intermediate mass (from the Greek word
mesos meaning “middle”) between the light electron
(0.511 MeV/¢?) and the heavy proton (938 MeV/¢?).

2.5 GENERAL RELATIVITY

Up to this point, we have sidestepped a curious puzzle. Mass has two seemingly
different properties: a gravitational attraction for other masses and an inertial
property that represents a resistance to acceleration. To designate these two at-
tributes, we use the subscripts gand 7 and write

¢Mg

72

m

Gravitational property: F,= G

Inertial property: SF= mua

The value for the gravitational constant G was chosen to make the magni-
tudes of my, and m; numerically equal. Regardless of how G is chosen,
however, the strict proportionality of m, and m; has been established ex-
perimentally to an extremely high degree: a few parts in 10'2. Thus, it
appears that gravitational mass and inertial mass may indeed be exactly
proportional.

But why? They seem to involve two entirely different concepts: a force of
mutual gravitational attraction between two masses, and the resistance of a sin-
gle mass to being accelerated. This question, which puzzled Newton and many
other physicists over the years, was answered by Einstein in 1916 when he pub-
lished his theory of gravitation, known as the general theory of relativity. Because
it is a mathematically complex theory, we offer merely a hint of its elegance
and insight.
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(a)

(b) (©) (d)

Figure 2.4 (a) The observer is at rest in a uniform gravitational field g, directed
downward. (b) The observer is in a region where gravity is negligible, but the frame is
accelerated by an external force F that produces an acceleration g directed upward.
According to Einstein, the frames of reference in parts (a) and (b) are equivalent in
every way. No local experiment can distinguish any difference between the two frames.
(c) In the accelerating frame, a ray of light would appear to bend downward due to the
acceleration of the elevator. (d) If parts (a) and (b) are truly equivalent, as Einstein
proposed, then part (c) suggests that a ray of light would bend downward in a gravita-
tional field.

In Einstein’s view, the dual behavior of mass was evidence of a very intimate
and basic connection between the two behaviors. He pointed out that no
mechanical experiment (such as dropping an object) could distinguish
between the two situations illustrated in Figures 2.4a and 2.4b. In Figure 2.4a,
a person is standing in an elevator on the surface of a planet and feels pressed
into the floor, due to the gravitational force. In Figure 2.4b, the person is in an
elevator in empty space accelerating upward with @ = g The person feels
pressed into the floor with the same force as in Figure 2.4a. In each case,
an object released by the observer undergoes a downward acceleration of
magnitude g relative to the floor. In Figure 2.4a, the person is in an inertial
frame in a gravitational field. In Figure 2.4b, the person is in a noninertial
frame accelerating in gravity-free space. Einstein’s claim is that these two situa-
tions are completely equivalent. Because the two reference frames in relative ac-
celeration can no longer be distinguished from one another, this extends the
idea of complete physical equivalence to reference frames accelerating transla-
tionally with respect to each other. This solved another philosophical issue
raised by Einstein, namely the artificiality of confining the principle of relativ-
ity to nonaccelerating frames.

Einstein carried his idea further and proposed that no experiment, me-
chanical or otherwise, could distinguish between the two cases. This exten-
sion to include all phenomena (not just mechanical ones) has interesting
consequences. For example, suppose that a light pulse is sent horizontally
across an elevator that is accelerating upward in empty space, as in Figure
2.4c. From the point of view of an observer in an inertial frame outside of
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the elevator, the light travels in a straight line while the floor of the elevator
accelerates upward. According to the observer on the elevator, however, the
trajectory of the light pulse bends downward as the floor of the elevator (and
the observer) accelerates upward. Therefore, based on the equality of parts
(a) and (b) of the figure for all phenomena, Einstein proposed that a beam
of light should also be defelected downward or fall in a gravitational
field, as in Figure 2.4d. Experiments have verified the effect, although the
bending is small. A laser aimed at the horizon falls less than 1 cm after trav-
eling 6000 km.
The two postulates of Einstein’s general theory of relativity are

e The laws of nature have the same form for observers in any frame of ref-
erence, whether accelerated or not.

« In the vicinity of any point, a gravitational field is equivalent to an acceler-
ated frame of reference in the absence of gravitational effects. (This is
the principle of equivalence.)

An interesting effect predicted by the general theory is that time is altered
by gravity. A clock in the presence of gravity runs slower than one located
where gravity is negligible. Consequently, the frequencies of radiation emit-
ted by atoms in the presence of a strong gravitational field are redshifted to
lower frequencies when compared with the same emissions in the presence of
a weak field. This gravitational redshift has been detected in spectral lines
emitted by atoms in massive stars. It has also been verified on the Earth by
comparing the frequencies of gamma rays (a high-energy form of electromag-
netic radiation) emitted from nuclei separated vertically by about 20 m (see
Section 3.7).

The second postulate suggests that a gravitational field may be “trans-
formed away” at any point if we choose an appropriate accelerated frame of
reference—a freely falling one. Einstein developed an ingenious method of
describing the acceleration necessary to make the gravitational field “disap-
pear.” He specified a concept, the curvature of spacetime, that describes the grav-
itational effect at every point. In fact, the curvature of spacetime completely
replaces Newton’s gravitational theory. According to Einstein, there is no such
thing as a gravitational force. Rather, the presence of a mass causes a curvature
of spacetime in the vicinity of the mass, and this curvature dictates the space-
time path that all freely moving objects must follow. In 1979, John Wheeler
(b. 1911, American theoretical physicist) summarized Einstein’s general
theory of relativity in a single sentence: “Space tells matter how to move and
matter tells space how to curve.”

As an example of the effects of curved spacetime, imagine two travelers
moving on parallel paths a few meters apart on the surface of the Earth and
maintaining an exact northward heading along two longitude lines. As they
observe each other near the equator, they will claim that their paths are ex-
actly parallel. As they approach the North Pole, however, they notice that
they are moving closer together, and they will actually meet at the North
Pole. Thus, they will claim that they moved along parallel paths, but moved
toward each other, as if there were an atlractive force between them. They will
make this conclusion based on their everyday experience of moving on flat
surfaces. From our perspective, however, we realize that they are walking on
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Figure 2.6 Albert FEinstein.
Gravity imaging was another tri-
umph for Einstein since he
pointed out that it might occur
in 1936. (Courtesy of AIP/Niels
Bohr Library).

Apparent
direction to star

Deflected path of light T
from star :

Light from star
(actual direction)

Earth

Figure 2.5 Deflection of starlight passing near the Sun. Because of this effect, the
Sun or some other remote object can act as a gravitational lens. In his general theory of
relativity, Einstein calculated that starlight just grazing the Sun’s surface should be de-
flected by an angle of 1.75 s of arc.

a curved surface, and it is the geometry of the curved surface that causes
them to converge, rather than an attractive force. In a similar way, general
relativity replaces the notion of forces with the movement of objects through
curved spacetime.

An important prediction of the general theory of relativity is that a light ray
passing near the Sun should be deflected in the curved spacetime created by
the Sun’s mass. This prediction was confirmed when astronomers detected the
bending of starlight near the Sun during a total solar eclipse that occurred
shortly after World War I (Fig. 2.5). When this discovery was announced,
Einstein became an international celebrity. (See the web essay by Clifford
Will for other important tests and ramifications of general relativity at
http://info.brookscole.com/mp3e.)

If the concentration of mass becomes very great, as is believed to occur
when a large star exhausts its nuclear fuel and collapses to a very small vol-
ume, a black hole may form. Here, the curvature of spacetime is so extreme
that, within a certain distance from the center of the black hole, all matter and
light become trapped, as discussed in Section 3.7.

Gravitational Radiation, or A Good Wave Is Hard to Find

Gravitational radiation is a subject almost as old as general relativity.
By 1916, Einstein had succeeded in showing that the field equations of gen-
eral relativity admitted wavelike solutions analogous to those of electromag-
netic theory. For example, a dumbbell rotating about an axis passing at
right angles through its handle will emit gravitational waves that travel at
the speed of light. Gravitational waves also carry energy away from the
dumbbell, just as electromagnetic waves carry energy away from a light
source. Also, like electromagnetic (em) waves, gravity waves are believed to
have a dual particle and wave nature. The gravitational particle, the gravi-
ton, is believed to have a mass of zero, to travel at the speed ¢, and to obey
the relativistic equation £ = pe.

In 1968, Joseph Weber initiated a program of gravitational-wave detection
using as detectors massive aluminum bars, suspended in vacuum and isolated
from outside forces. Gravity waves are notoriously more difficult to detect than
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Figure 2.7 Joseph Weber working on a bar detector at the University of Maryland in the
early 1970’s. The fundamental frequency of the bar was 1660 Hz. Piezoelectric crystals
around the center of the bar convert tiny mechanical vibrations to electrical signals. (Cour-
tesy of AIP Emilio Segre Visual Archives)

em waves not only because gravitational forces are much weaker than electric
forces but also because gravitational “charge” or mass only comes in one vari-
ety, positive. Figure 2.8a shows why a dipolar em wave detector is much more
sensitive than a gravitational bar detector shown in Figure 2.8b. Nevertheless,
as shown in Figure 2.9, if the distance between detecting masses is of the same
order of magnitude as the wavelength of the gravity wave, passing gravitational
waves exert a weak net oscillating force that alternately compresses and ex-
tends the bar lengthwise.

Tiny vibrations of the bar are detected by crystals attached to the bar that
convert the vibrations to electrical signals. Currently, a dozen laboratories
around the world are engaged in building and improving the basic “Weber
bar” detector, striving to reduce noise from thermal, electrical, and envi-
ronmental sources in order to detect the very weak oscillations produced by
a gravitational wave. For a bar of 1 meter in length, the challenge is to detect
a variation in length smaller than 1072° m, or 107> of the radius of a pro-
ton. This sensitivity is predicated on a massive nearby catastrophic source of
gravitational waves, such as the gravitational collapse of a star to form a
black hole at the center of our galaxy. Thus, gravity waves are not only hard to
detect but also hard to generate with great intensity. It is interesting that
collapsing star models predict a collapse to take about a millisecond, with
production of gravity waves of frequency around 1 kHz and wavelengths of
several hundred km.
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Figure 2.8 Simple models of
em and gravity wave detectors.
The detectors are shown as two
“charges” with a spring sand-
wiched in between, the idea be-
ing that the waves exert forces
on the charges and set the spring
vibrating in proportion to the
wave intensity. The detector will
be particularly sensitive when
the wave frequency matches
the natural frequency of the
spring—mass system. (a) Equal
and opposite electric charges
move in opposite directions
when subjected to an em wave
and easily excite the spring.
(b) A metal bar gravity wave
detector can be modeled by
a spring connecting two equal
masses; however, a wave encoun-
tering both masses in phase will
not cause the spring to vibrate.

/ /
/ /

/ .
To distant

—\
/Out-of-phase
/' gravity waves,

Figure 2.9 If the gravity wave
detector is of the same size as
the wavelength of the radiation
detected, the waves arrive out-
of-phase at the two masses and
the system starts to vibrate.
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Figure 2.11 400 consecutive
radio pulses from pulsar PSR
0950+08. Each line of the 400
represents a consecutive time
interval of 0.253 s.

Image not available due to copyright restrictions

(@)

Figure 2.10 (a) Prototype LIGO apparatus with 40 m arms.
a: Tony Tyson/Lucent Technologies/Bell Labs Innovations;

At this time, several “laser-interferometric” gravitational-wave observatories
(LIGO) are in operation or under construction in the United States and Eu-
rope. These reflect laser beams along perpendicular arms to monitor tiny vari-
ations in length between mirrors spaced several kilometers apart in a giant
Michelson—Morley apparatus. (See Figures 2.10a and b.) The variations in
arm length should occur when a gravitational wave passes through the appara-
tus. Two LIGO sites with 4-km arms are currently in operation in the United
States in Livingston, Louisiana and Hanford, Washington. The two sites, sepa-
rated by about 2000 miles, search for signals that appear simultaneously at
both sites. Such coincidences are more likely to be gravity waves from a distant
star rather than local noise signals.

Although gravitational radiation has not been detected directly, we know
that it exists through the observations of a remarkable system known as the
binary pulsar. Discovered in 1974 by radio astronomers Russell Hulse and
Joseph Taylor, it consists of a pulsar (which is a rapidly spinning neutron
star) and a companion star in orbit around each other. Although the com-
panion has not been seen directly, it is also believed to be a neutron star.
The pulsar acts as an extremely stable clock, its pulse period of approxi-
mately 59 milliseconds drifting by only 0.25 ns/year. Figure 2.11 shows the
remarkable regularity of 400 consecutive radio pulses from a pulsar. By mea-
suring the arrival times of radio pulses at Earth, observers were able to de-
termine the motion of the pulsar about its companion with amazing accu-
racy. For example, the accurate value for the orbital period is 27906.980 895
s, and the orbital eccentricity is 0.617|131. Like a rotating dumbbell, an or-
biting binary system should emit gravitational radiation and, in the process,
lose some of its orbital energy. This energy loss will cause the pulsar and its
companion to spiral in toward each other and the orbital period to shorten.
According to general relativity, the predicted decrease in the orbital period
is 75.8 us/year. The observed decrease in orbital period is in agreement
with the prediction to better than 0.5%. This confirms the existence of
gravitational radiation and the general relativistic equations that describe it.
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Image not available due to copyright restrictions

Figure 2.12 (a) Russell Hulse shown in 1974 operating his computer and teletype
at Arecibo observatory in Puerto Rico. The form records the “fantastic” detection of
PSR 1913+16, with its ever-changing periods scratched out by Hulse in frustration.

(a: Photo Courlesy of Russell Hulse. © The Nobel Foundation, 1993;

Hulse and Taylor (Figure 2.12) received the Nobel prize in 1993 for this

discovery.

SUMMARY

The relativistic expression for the linear momentum of a particle moving with

a velocity u is

mu

P V1 — (u2/c?)

= ymu

where v is given by

-

V1 — (u2/c?)

The relativistic expression for the kinetic energy of a particle is
2

K= ymc® — me

where mc? is called the rest energy of the particle.
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The total energy £ of a particle is related to the mass through the expression

2
2 _ mc

V1= (u%/c?)

The total energy of a particle of mass m is related to the momentum
through the equation

E= yme (2.10)

E? = pQCQ + (me?)? (2.11)

Finally, the law of the conservation of mass—energy states that the sum of the
mass—energy of a system of particles before interaction must equal the sum of the mass—
energy of the system after interaction where the mass— energy of the ith particle is defined as

ml-cQ

V1 = (ui/ %)

Application of the principle of conservation of mass—energy to the specific
cases of (1) the fission of a heavy nucleus at rest and (2) the fusion of several
particles into a composite nucleus with less total mass allows us to define
(1) the energy released per fission, Q, and (2) the binding energy of a com-
posite system, BE.

The two postulates of Einstein’s general theory of relativity are

Ei:

e The laws of nature have the same form for observers in any frame of ref-
erence, whether accelerated or not.

¢ In the vicinity of any point, a gravitational field is equivalent to an acceler-
ated frame of reference in the absence of gravitational effects. (This is
the principle of equivalence.)

The field equations of general relativity predict gravitational waves, and a
worldwide search is currently in progress to detect these elusive waves.

(©S. Harris)
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QUESTIONS

1

. A particle is moving at a speed of less than ¢/2. If the
speed of the particle is doubled, what happens to its
momentum?

. Give a physical argument showing that it is impossible
to accelerate an object of mass m to the speed of light,
even with a continuous force acting on it.

. The upper limit of the speed of an electron is the
speed of light, ¢. Does that mean that the momentum
of the electron has an upper limit?

. Because mass is a measure of energy, can we conclude
that the mass of a compressed spring is greater than
the mass of the same spring when it is not compressed?

. Photons of light have zero mass. How is it possible that
they have momentum?

. “Newtonian mechanics correctly describes objects mov-
ing at ordinary speeds, and relativistic mechanics cor-
rectly describes objects moving very fast.” “Relativistic me-
chanics must make a smooth transition as it reduces to
Newtonian mechanics in a case where the speed of an
object becomes small compared to the speed of light.”
Argue for or against each of these two statements.

. Two objects are identical except that one is hotter than
the other. Compare how they respond to identical forces.

PROBLEMS

2.1 Relativistic Momentum and the Relativistic
Form of Newton’s Laws

1

2.

. Calculate the momentum of a proton moving with a
speed of (a) 0.010¢, (b) 0.50¢, (c) 0.90¢. (d) Convert
the answers of (a)—(c) to MeV/c.

An electron has a momentum that is 90% larger than
its classical momentum. (a) Find the speed of the elec-
tron. (b) How would your result change if the particle
were a proton?
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. With regard to reference frames, how does general rel-

ativity differ from special relativity?

. Two identical clocks are in the same house, one up-

stairs in a bedroom, and the other downstairs in the
kitchen. Which clock runs more slowly? Explain.

A thought experiment. Imagine ants living on a merry-go-
round, which is their two-dimensional world. From mea-
surements on small circles they are thoroughly familiar
with the number 7. When they measure the circumfer-
ence of their world, and divide it by the diameter, they
expect to calculate the number 7 = 3.14159. . . . We
see the merry-goround turning at relativistic speed.
From our point of view, the ants’ measuring rods on the
circumference are experiencing Lorentz contraction in
the tangential direction; hence the ants will need some
extra rods to fill that entire distance. The rods measuring
the diameter, however, do not contract, because their
motion is perpendicular to their lengths. As a result, the
computed ratio does not agree with the number . If you
were an ant, you would say that the rest of the universe is
spinning in circles, and your disk is stationary. What pos-
sible explanation can you then give for the discrepancy,
in view of the general theory of relativity?

. Consider the relativistic form of Newton’s second law.

Show that when F is parallel to v,

7% du
F=m(l-— —
¢ dt

where m is the mass of an object and v is its speed.

. A charged particle moves along a straight line in a uni-

form electric field E with a speed v. If the motion and
the electric field are both in the x direction, (a) show
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that the magnitude of the acceleration of the charge ¢
is given by

k(o)

dt m 2

(b) Discuss the significance of the dependence of the
acceleration on the speed. (c) If the particle starts from
restat x = 0 at ¢ = 0, find the speed of the particle and
its position after a time ¢ has elapsed. Comment on the
limiting values of vand xas t = <.

. Recall that the magnetic force on a charge ¢ moving

with velocity v in a magnetic field B is equal to gv X B.
If a charged particle moves in a circular orbit with a
fixed speed v in the presence of a constant magnetic
field, use the relativistic form of Newton’s second law to
show that the frequency of its orbital motion is

¢B 22 \1/2
S=5—\1——=%

4

. Show that the momentum of a particle having charge ¢

moving in a circle of radius R in a magnetic field B is
given by p = 300BR, where p is in MeV/¢, Bis in teslas,
and Ris in meters.

2.2 Relativistic Energy

7.

10.

11.

12.

13.

14.

15.

Show that the energy—momentum relationship given
by E? = p2¢2 + (mc®)? follows from the expressions
E= ymc® and p = ymu.

. A proton moves at a speed of 0.95¢ Calculate its

(a) rest energy, (b) total energy, and (c) kinetic energy.

. An electron has a kinetic energy 5 times greater than its

rest energy. Find (a) its total energy and (b) its speed.
Find the speed of a particle whose total energy is 50%
greater than its rest energy.

A proton in a high-energy accelerator is given a kinetic
energy of 50 GeV. Determine the (a) momentum and
(b) speed of the proton.

An electron has a speed of 0.75¢. Find the speed of a
proton that has (a) the same kinetic energy as the elec-
tron and (b) the same momentum as the electron.
Protons in an accelerator at the Fermi National Lab-
oratory near Chicago are accelerated to an energy
of 400 times their rest energy. (a) What is the
speed of these protons? (b) What is their kinetic en-
ergy in MeV?

How long will the Sun shine, Nellie? The Sun radiates
about 4.0 X 102°J of energy into space each second.
(a) How much mass is released as radiation each sec-
ond? (b) If the mass of the Sun is 2.0 X 10% kg, how
long can the Sun survive if the energy release contin-
ues at the present rate?

Electrons in projection television sets are acceler-
ated through a total potential difference of 50,000 V.
(a) Calculate the speed of the electrons using the
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17.

18.

19.

20.

24

relativistic form of kinetic energy assuming the elec-
trons start from rest. (b) Calculate the speed of the
electrons using the classical form of kinetic energy.
(c) Is the difference in speed significant in the design
of this set in your opinion?

As noted in Section 2.2, the quantity £ — p2c? is an in-
variant in relativity theory. This means that the quantity
E? — p?¢? has the same value in all inertial frames even
though E and p have different values in different
frames. Show this explicitly by considering the follow-
ing case. A particle of mass m is moving in the +x
direction with speed « and has momentum p and en-
ergy I/ in the frame S. (a) If " is moving at speed v in
the standard way, find the momentum p’ and energy E’
observed in S’. (Hint: Use the Lorentz velocity transfor-
mation to find p’ and E’. Does E=E' and p= p'?
(b) Show that E? — p2¢?is equal to E'? — p'2c2.

Mass as a Measure of Energy

A radium isotope decays to a radon isotope, ?’Rn, by
emitting an « particle (a helium nucleus) according
to the decay scheme ??°Ra — 22?Rn + *He. The masses
of the atoms are 226.0254 (Ra), 222.0175 (Rn), and
4.0026 (He). How much energy is released as the result
of this decay?

Consider the decay 35Cr — 33Mn + e~, where e is an
electron. The %°Cr nucleus has a mass of 54.9279 u,
and the °°Mn nucleus has a mass of 54.9244 u. (a) Cal-
culate the mass difference in MeV. (b) What is the max-
imum kinetic energy of the emitted electron?

Calculate the binding energy in MeV per nucleon in
the isotope '2C. Note that the mass of this isotope is ex-
actly 12 u, and the masses of the proton and neutron
are 1.007276 u and 1.008665 u, respectively.

The free neutron is known to decay into a proton, an
electron, and an antineutrino v (of negligible rest
mass) according to

n—p+t+e +7w
This is called beta decay and will be discussed further in
Chapter 13. The decay products are measured to have a
total kinetic energy of 0.781 MeV + 0.005 MeV. Show

that this observation is consistent with the excess energy
predicted by the Einstein mass—energy relationship.

Conservation of Relativistic Momentum

and Energy

21.

An electron having kinetic energy K = 1.000 MeV
makes a head-on collision with a positron at rest. (A
positron is an antimatter particle that has the same
mass as the electron but opposite charge.) In the
collision the two particles annihilate each other and
are replaced by two v rays of equal energy, each trav-
eling at equal angles 6 with the electron’s direction of
motion. (Gamma rays are massless particles of elec-



22.

23.

tromagnetic radiation having energy E = pc.) Find
the energy E, momentum p, and angle of emission 0
of the v rays.

The K” meson is an uncharged member of the particle
“z00” that decays into two charged pions according to
K’ — 7t + 7. The pions have opposite charges, as in-
dicated, and the same mass, m, = 140 MeV/ 2. Sup-
pose that a K” at rest decays into two pions in a bubble
chamber in which a magnetic field of 2.0 T is present
(see Fig. P2.22). If the radius of curvature of the pions
is 34.4 cm, find (a) the momenta and speeds of the
pions and (b) the mass of the K% meson.

An unstable particle having a mass of 3.34 X 10~ 27 kg
is initially at rest. The particle decays into two frag-
ments that fly off with velocities of 0.987¢ and — 0.868c.
Find the rest masses of the fragments.

ADDITIONAL PROBLEMS

24

25.

26.

27.

28.

. As measured by observers in a reference frame S, a
particle having charge ¢ moves with velocity v in a
magnetic field B and an electric field E. The result-
ing force on the particle is then measured to be
F = ¢(E + v X B). Another observer moves along
with the charged particle and measures its charge to
be ¢ also but measures the electric field to be E'. If
both observers are to measure the same force, F,
show that E' = E + v X B.

Classical deflection of light by the Sun Estimate the deflec-
tion of starlight grazing the surface of the Sun. Assume
that light consists of particles of mass m traveling with
velocity ¢ and that the deflection is small. (a) Use
Ap, = [*ZF,dt to show that the angle of deflection 6 is

given by 6 = QZQL where Ap, is the total change in
momentum of a light particle grazing the Sun.
See Figures P2.25a and b. (b) For b = R;, show that
6 =42 X 10" 5 rad.

An object having mass of 900 kg and traveling at a
speed of 0.850¢ collides with a stationary object having
mass 1400 kg. The two objects stick together. Find (a)
the speed and (b) the mass of the composite object.
Imagine that the entire Sun collapses to a sphere of
radius R, such that the work required to remove a small
mass m from the surface would be equal to its rest
energy mc2. This radius is called the gravitational radius
for the Sun. Find R,. (It is believed that the ultimate
fate of very massive stars is to collapse beyond their
gravitational radii into black holes.)

A rechargeable AA battery with a mass of 25.0 g
can supply a power of 1.20 W for 50.0 min. (a) What is
the difference in mass between a charged and an un-
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Figure P2.22 A sketch of the tracks made by the 7" and
m~ in the decay of the K” meson at rest. The pion motion is
perpendicular to B. (B is directed out of the page.)
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(a)

Figure P2.25 The classical deflection of starlight grazing
the sun.

29.

30.

charged battery? (b) What fraction of the total mass is
this mass difference?

An object disintegrates into two fragments. One of
the fragments has mass 1.00 MeV/¢? and momentum
1.75 MeV/¢ in the positive x direction. The other
fragment has mass 1.50 MeV/¢? and momentum
2.005 MeV/¢ in the positive y direction. Find (a) the
mass and (b) the speed of the original object.

The creation and study of new elementary particles is
an important part of contemporary physics. Especially
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interesting is the discovery of a very massive particle. To
create a particle of mass M requires an energy Mc>.
With enough energy, an exotic particle can be created
by allowing a fast-moving particle of ordinary matter,
such as a proton, to collide with a similar target par-
ticle. Let us consider a perfectly inelastic collision
between two protons: An incident proton with mass m,
kinetic energy K, and momentum magnitude p joins
with an originally stationary target proton to form a sin-
gle product particle of mass M. You might think that
the creation of a new product particle, 9 times more
massive than in a previous experiment, would require
just 9 times more energy for the incident proton. Un-
fortunately, not all of the kinetic energy of the incom-
ing proton is available to create the product particle,
since conservation of momentum requires that after
the collision the system as a whole still must have some
kinetic energy. Only a fraction of the energy of the inci-
dent particle is thus available to create a new particle.
You will determine how the energy available for parti-
cle creation depends on the energy of the moving pro-
ton. Show that the energy available to create a product
particle is given by

Mc? = 2mc? \,1 + KQ
2me

From this result, when the kinetic energy K of the
incident proton is large compared to its rest energy
me?, we see that M approaches (2mK)!/2/c. Thus if the
energy of the incoming proton is increased by a factor
of 9, the mass you can create increases only by a factor
of 3. This disappointing result is the main reason that
most modern accelerators, such as those at CERN (in
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33.

Europe), at Fermilab (near Chicago), at SLAC (at
Stanford), and at DESY (in Germany), use colliding
beams. Here the total momentum of a pair of interact-
ing particles can be zero. The center of mass can be
at rest after the collision, so in principle all of the
initial kinetic energy can be used for particle creation,

aCCOrding to
)
2m62

where K is the total kinetic energy of two identical col-
liding particles. Here, if K >> mc?, we have M directly
proportional to K, as we would desire. These machines
are difficult to build and to operate, but they open new
vistas in physics.

Mc? = 2mc? + K = 2mc? <1 +

. A particle of mass m moving along the xaxis with a

velocity component +u collides head-on and sticks to a
particle of mass m/3 moving along the xaxis with the
velocity component —wu. What is the mass M of the
resulting particle?

Compact high-power lasers can produce a 2.00- light
pulse of duration 100 fs focused to a spot 1 um in diam-
eter. (See Mourou and Umstader, “Extreme Light,” Sci-
entific American, May 2002, p. 81.) The electric field in
the light accelerates electrons in the target material to
near the speed of light. (a) What is the average power of
the laser during the pulse? (b) How many electrons can
be accelerated to 0.9999¢ if 0.0100% of the pulse energy
is converted into energy of electron motion?

Energy reaches the upper atmosphere of the Earth from
the Sun at the rate of 1.79 X 107 W. If all of this energy
were absorbed by the Earth and not re-emitted, how
much would the mass of the Earth increase in 1.00 yr?
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At the beginning of the 20th century, following the lead of Newton and
Maxwell, physicists might have rewritten the biblical story of creation as follows:

In the beginning He created the heavens and the earth—

and He said, “Let there be light” —
ad
ffEdA: < fﬁE.ds =-—=

€0 dt

dDy
di

%BdAZO éB'dS:[.LoI"FS()/,LO

Actually, in addition to the twin pillars of mechanics and electromagnetism
erected by the giants Newton and Maxwell, there was a third sturdy support
for physics in 1900 —thermodynamics and statistical mechanics. Classical
thermodynamics was the work of many men (Carnot, Mayer, Helmholtz,
Clausius, Lord Kelvin). It is especially notable because it starts with two simple
propositions and gives solid and conclusive results independent of detailed
physical mechanisms. Statistical mechanics, founded by Maxwell, Clausius,
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CHAPTER 3

THE QUANTUM THEORY OF LIGHT

Boltzmann,' and Gibbs, uses the methods of probability theory to calculate
averages and fluctuations from the average for systems containing many parti-
cles or modes of vibration. It is interesting that quantum physics started not
with a breakdown of Maxwell’s or Newton’s laws applied to the atom, but with a
problem of classical statistical mechanics—that of calculating the intensity of
radiation at a given wavelength from a heated cavity. The desperate solution to
this radiation problem was found by a thoroughly classical thermodynamicist,
Max Planck, in 1900. Indeed, it is significant that both Planck and Einstein
returned again and again to the simple and general foundation of thermody-
namics and statistical mechanics as the only certain bases for the new quantum
theory. Although we shall not follow the original thermodynamic arguments
completely, we shall see in this chapter how Planck arrived at the correct spec-
tral distribution for cavity radiation by allowing only certain energies for the
radiation-emitting oscillators in the cavity walls. We shall also see how Einstein
extended this quantization of energy to light itself, thereby brilliantly explain-
ing the photoelectric effect. We conclude our brief history of the quantum the-
ory of light with a discussion of the scattering of light by electrons (Compton
effect), which showed conclusively that the light quantum carried momentum
as well as energy. Finally, we describe the pull of gravity on light in Section 3.7.

3.1 HERTZ’S EXPERIMENTS —LIGHT AS AN
ELECTROMAGNETIC WAVE

It is ironic that the same experimentalist who so carefully confirmed that the
“newfangled” waves of Maxwell actually existed and possessed the same prop-
erties as light also undermined the electromagnetic wave theory as the com-
plete explanation of light. To understand this irony, let us briefly review the
theory of electromagnetism developed by the great Scottish physicist James
Clerk Maxwell between 1865 and 1873.

Maxwell was primarily interested in the effects of electric current oscillations
in wires. According to his theory, an alternating current would set up fluctuating
electric and magnetic fields in the region surrounding the original disturbance.
Moreover, these waves were predicted to have a frequency equal to the frequency
of the current oscillations. In addition, and most importantly, Maxwell’s theory pre-
dicted that the radiated waves would behave in every way like light: electromagnetic
waves would be reflected by metal mirrors, would be refracted by dielectrics like
glass, would exhibit polarization and interference, and would travel outward
from the wire through a vacuum with a speed of 3.0 X 10® m/s. Naturally this led
to the unifying and simplifying postulate that light was also a type of Maxwell
wave or electromagnetic disturbance, created by extremely high frequency elec-
tric oscillators in matter. At the end of the 19th century the precise nature of
these charged submicroscopic oscillators was unknown (Planck called them res-
onators), but physicists assumed that somehow they were able to emit light waves
whose frequency was equal to the oscillator’s frequency of motion.

Even at this time, however, it was apparent that this model of light emis-
sion was incapable of direct experimental verification, because the highest

1On whose tombstone is written S = kp log W, a basic formula of statistical mechanics attributed
to Boltzmann.
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electrical frequencies then attainable were about 10 Hz and visible light was
known to possess a frequency a million times higher. But Heinrich Hertz (Fig.
3.1) did the next best thing. In a series of brilliant and exhaustive experi-
ments, he showed that Maxwell’s theory was correct and that an oscillating
electric current does indeed radiate electromagnetic waves that possess every
characteristic of light except the same wavelength as light. Using a simple
spark gap oscillator consisting of two short stubs terminated in small metal
spheres separated by an air gap of about half an inch, he applied pulses
of high voltage, which caused a spark to jump the gap and produce a high-
frequency electric oscillation of about 5 X 10% Hz. This oscillation, or ring-
ing, occurs while the air gap remains conducting, and charge surges back and
forth between the spheres until electrical equilibrium is established. Using a
simple loop antenna with a small spark gap as the receiver, Hertz very quickly
succeeded in detecting the radiation from his spark gap oscillator, even at dis-
tances of several hundred meters. Moreover, he found the detected radiation
to have a wavelength of about 60 cm, corresponding to the oscillator fre-
quency of 5 X 108 Hz. (Recall that ¢ = Af, where A is the wavelength and fis
the frequency.)

In an exhaustive tour de force, Hertz next proceeded to show that these
electromagnetic waves could be reflected, refracted, focused, polarized,
and made to interfere—in short, he convinced physicists of the period that
Hertzian waves and light waves were one and the same. The classical model for
light emission was an idea whose time had come. It spread like wildfire. The
idea that light was an electromagnetic wave radiated by oscillating submicro-
scopic electric charges (now known to be atomic electrons) was applied in
rapid succession to the transmission of light through solids, to reflection from
metal surfaces, and to the newly discovered Zeeman effect. In 1896, Pieter
Zeeman, a Dutch physicist, discovered that a strong magnetic field changes
the frequency of the light emitted by a glowing gas. In an impressive victory
for Maxwell, it was found that Maxwell’s equations correctly predicted (in
most cases) the change of vibration of the electric oscillators and hence, the
change in frequency of the light emitted. (See Problem 1.) Maxwell, with
Hertz behind the throne, reigned supreme, for he had united the formerly in-
dependent kingdoms of electricity, magnetism, and light! (See Fig. 3.2.)

A terse remark made by Hertz ends our discussion of his confirmation of
the electromagnetic wave nature of light. In describing his spark gap transmit-
ter, he emphasizes that “it is essential that the pole surfaces of the spark gap

Figure 3.2 A light or radio wave far from the source according to Maxwell and Hertz.
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Figure 3.1 Heinrich Hertz
(1857-1894), an extraordinar-
ily gifted German experimental-
ist. (©Bettmann,/ Corbis)
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— }‘max

4000 K

3000 K

Intensity per unit wavelength

2000 K

A (pm)

Figure 3.3 Emission from a
glowing solid. Note that the
amount of radiation emitted
(the area under the curve) in-
creases rapidly with increasing
temperature.

Blackbody

should be frequently repolished” to ensure reliable operation of the spark.?
Apparently this result was initially quite mysterious to Hertz. In an effort to re-
solve the mystery, he later investigated this side effect and concluded that it
was the ultraviolet light from the initial spark acting on a clean metal surface
that caused current to flow more freely between the poles of the spark gap. In
the process of verifying the electromagnetic wave theory of light, Hertz had
discovered the photoelectric effect, a phenomenon that would undermine the
priority of the wave theory of light and establish the particle theory of light on
an equal footing.

3.2 BLACKBODY RADIATION

The tremendous success of Maxwell’s theory of light emission immediately led
to attempts to apply it to a long-standing puzzle about radiation—the so-
called “blackbody” problem. The problem is to predict the radiation intensity
at a given wavelength emitted by a hot glowing solid at a specific temperature.
Instead of launching immediately into Planck’s solution of this problem, let
us develop a feeling for its importance to classical physics by a quick review
of its history.

Thomas Wedgwood, Charles Darwin’s relative and a renowned maker of
china, seems to have been the first to note the universal character of all
heated objects. In 1792, he observed that all the objects in his ovens, regard-
less of their chemical nature, size, or shape, became red at the same tempera-
ture. This crude observation was sharpened considerably by the advancing
state of spectroscopy, so that by the mid-1800s it was known that glowing solids
emit continuous spectra rather than the bands or lines emitted by heated
gases. (See Fig. 3.3.) In 1859, Gustav Kirchhoff proved a theorem as important
as his circuit loop theorem when he showed by arguments based on thermody-
namics that for any body in thermal equilibrium with radiation® the emitted
power is proportional to the power absorbed. More specifically,

er=J(f, T)As (3.1)

where ey is the power emitted per unit area per unit frequency by a particular
heated object, Aris the absorption power (fraction of the incident power ab-
sorbed per unit area per unit frequency by the heated object), and J(f, T) is a
universal function (the same for all bodies) that depends only on £, the light
frequency, and 7, the absolute temperature of the body. A blackbody is defined
as an object that absorbs all the electromagnetic radiation falling on it and
consequently appears black. It has Af= 1 for all frequencies and so Kirch-
hoff’s theorem for a blackbody becomes

og=J(f. 1) (3.2)

2H. Hertz, Ann. Physik (Leipzig), 33:983, 1887.

3An example of a body in equilibrium with radiation would be an oven with closed walls at a fixed
temperature and the radiation within the oven cavity. To say that radiation is in thermal equilib-
rium with the oven walls means that the radiation has exchanged energy with the walls many
times and is homogeneous, isotropic, and unpolarized. In fact, thermal equilibrium of radiation
within a cavity can be considered to be quite similar to the thermal equilibrium of a fluid within a
container held at constant temperature—both will cause a thermometer in the center of the cav-
ity to achieve a final stationary temperature equal to that of the container.
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Equation 3.2 shows that the power emitted per unit area per unit frequency by
a blackbody depends only on temperature and light frequency and not on
the physical and chemical makeup of the blackbody, in agreement with
Wedgwood’s early observation.

Because absorption and emission are connected by Kirchhoff’s theorem, we
see that a blackbody or perfect absorber is also an ideal radiator. In practice, a
small opening in any heated cavity, such as a port in an oven, behaves like a
blackbody because such an opening traps all incident radiation (Fig. 3.4). If
the direction of the radiation is reversed in Figure 3.4, the light emitted by a
small opening is in thermal equilibrium with the walls, because it has been
absorbed and re-emitted many times.

The next important development in the quest to understand the universal
character of the radiation emitted by glowing solids came from the Austrian
physicist Josef Stefan (1835-1893) in 1879. He found experimentally that the
total power per unit area emitted at all frequencies by a hot solid, ey, was
proportional to the fourth power of its absolute temperature. Therefore,
Stefan’s law may be written as

Crotal — f() e df: oT? (3.3)
where ey is the power per unit area emitted at the surface of the blackbody
at all frequencies, eyis the power per unit area per unit frequency emitted by
the blackbody, 7T is the absolute temperature of the body, and o is the
Stefan—Boltzmann constant, given by o = 5.67 X 1078 W-m~2-K~*. A body
that is not an ideal radiator will obey the same general law but with a coeffi-
cient, a, less than 1:

(3.4)

—_ 4
Crotal — acT

Only 5 years later another impressive confirmation of Maxwell’s electromag-
netic theory of light occurred when Boltzmann derived Stefan’s law from a
combination of thermodynamics and Maxwell’s equations.

EXAMPLE 3.1 Stefan’s Law Applied to the Sun

Estimate the surface temperature of the Sun from
the following information. The Sun’s radius is given
by R, = 7.0 X 103 m. The average Earth—Sun distance
is R=1.5 X 10" m. The power per unit area (at all fre- or
quencies) from the Sun is measured at the Earth to be

1400 W/m?. Assume that the Sun is a blackbody.

erotal (Rs) * 47TR3 =

Figure 3.4 The opening to the
cavity inside a body is a good
approximation of a blackbody.
Light entering the small opening
strikes the far wall, where some
of it is absorbed but some is re-
flected at a random angle. The
light continues to be reflected,
and at each reflection a portion
of the light is absorbed by the
cavity walls. After many reflec-
tions essentially all of the inci-
dent energy is absorbed.

Stefan’s law

eiotal (Rs). This comes from the conservation of energy:

eworal (R) * 4mR?

Using Equation 3.5, we have

Solution For a black body, we take a = 1, so Equation
3.4 gives

gtntal(Rs) = UT4 (35)

or

|

R2
ol (Rs) = e (R) - —5
total S total R§
elotal(R)'RQ 1/4

oR2

per unit area at the surface of the Sun. Because the prob-
lem gives the total power per unit area at the Earth,
ol (R), we need the connection between ey, (R) and

where the notation ey, (Rs) stands for the total power [

= 5800 K

(1400 W/m?) (1.5 X 101! m)2 174
(5.6 X 1078 W/m?2 - K*) (7.0 X 103 m)?2
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Spectral energy density of a
blackbody

As can be seen in Figure 3.3, the wavelength marking the maximum power
emission of a blackbody, Ay, shifts toward shorter wavelengths as the black-
body gets hotter. This agrees with Wedgwood’s general observation that
objects in his kiln progressed from dull red to orange to white in color as
the temperature was raised. This simple effect of Ay, & T-! was not
definitely established, however, until about 20 years after Kirchhoft’s
seminal paper had started the search to find the form of the universal
function J(f; T). In 1893, Wilhelm Wien proposed a general form for
the blackbody distribution law J(f, 7') that gave the correct experimental
behavior of Ay, with temperature. This law is called Wien’s displacement law
and may be written

M T = 2.898 X 1073 m-K (3.6)

where Ay, is the wavelength in meters corresponding to the blackbody’s
maximum intensity and 7 is the absolute temperature of the surface of
the object emitting the radiation. Assuming that the peak sensitivity of
the human eye (which occurs at about 500 nm—blue-green light) coin-
cides with A, for the Sun (a blackbody), we can check the consistency
of Wien’s displacement law with Stefan’s law by recalculating the Sun’s
surface temperature:

~ 2898 X 10 %m-K
500 X 10™9m

= 5800 K

Thus we have good agreement between measurements made at all wave-
lengths (Example 3.1) and at the maximum-intensity wavelength.

Exercise I How convenient that the Sun’s emission peak is at the same wavelength as
our eyes’ sensitivity peak! Can you account for this?

So far, the power radiated per unit area per unit frequency by the black-
body, J(f, T) has been discussed. However, it is more convenient to consider
the spectral energy density, or energy per unit volume per unit frequency of the radi-
ation within the blackbody cavity, u( f, T). For light in equilibrium with the walls,
the power emitted per square centimeter of opening is simply proportional to
the energy density of the light in the cavity. Because the cavity radiation is
isotropic and unpolarized, one can average over direction to show that the
constant of proportionality between J(f, T) and u(f, T) is ¢/4, where ¢ is the
speed of light. Therefore,

JUET) = u(f, T)e/4 (8.7

An important guess as to the form of the universal function u(f, T) was
made in 1893 by Wien and had the form

u(f, T)=Af3e BI/T (3.8)

where A and 8 are constants. This result was known as Wien’s exponential law;
it resembles and was loosely based on Maxwell’s velocity distribution for gas
molecules. Within a year the great German spectroscopist Friedrich Paschen
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Figure 3.5 Discrepancy between Wien’s law and experimental data for a blackbody
at 1500 K.

had confirmed Wien’s guess by working in the then difficult infrared range of
1 to 4 um and at temperatures of 400 to 1600 K.*

As can be seen in Figure 3.5, Paschen had made most of his measurements
in the maximum energy region of a body heated to 1500 K and had found
good agreement with Wien’s exponential law. In 1900, however, Lummer and
Pringsheim extended the measurements to 18 um, and Rubens and Kurlbaum
went even farther—to 60 um. Both teams concluded that Wien’s law failed
in this region (see Fig. 3.5). The experimental setup used by Rubens and
Kurlbaum is shown in Figure 3.6. It is interesting to note that these historic

-

%@

Figure 3.6 Apparatus for measuring blackbody radiation at a single wavelength in
the far infrared region. The experimental technique that disproved Wien’s law and
was so crucial to the discovery of the quantum theory was the method of residual
rays (Restrahlen). In this technique, one isolates a narrow band of far infrared radia-
tion by causing white light to undergo multiple reflections from alkalide halide crys-
tals (P1—Py4). Because each alkali halide has a maximum reflection at a characteristic
wavelength, quite pure bands of far infrared radiation may be obtained with
repeated reflections. These pure bands can then be directed onto a thermopile (7))
to measure intensity. £ is a thermocouple used to measure the temperature of the
blackbody oven, K.

“We should point out the great difficulty in making blackbody radiation measurements and the
singular advances made by German spectroscopists in the crucial areas of blackbody sources, sen-
sitive detectors, and techniques for operating far into the infrared region. In fact, it is dubious
whether Planck would have found the correct blackbody law as quickly without his close associa-
tion with the experimentalists at the Physikalisch Technische Reichsanstalt of Berlin (a sort of
German National Bureau of Standards) —Otto Lummer, Ernst Pringsheim, Heinrich Rubens,
and Ferdinand Kurlbaum.
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Figure 3.7 Comparison of theoretical and experimental blackbody emission curves at
51.2 um and over the temperature range of —188° to 1500°C. The title of this modified
figure is “Residual Rays from Rocksalt.” Berechnet nach means “calculated according to,”
and beobachtet means “observed.” The vertical axis is emission intensity in arbitrary
units. (From H. Rubens and S. Kurlbawm, Ann. Physik, 4:649, 1901.)

experiments involved the measurement of blackbody radiation intensity at
a fixed wavelength and variable temperature. Typical results measured at
A = 51.2 um and over the temperature range of —200° to +1500°C are shown
in Figure 3.7, from the paper by Rubens and Kurlbaum.

Enter Planck

On a Sunday evening early in October of 1900, Max Planck discovered the fa-
mous blackbody formula, which truly ushered in the quantum theory. Planck’s
proximity to the Reichsanstalt experimentalists was extremely important for
his discovery—earlier in the day he had heard from Rubens that his latest

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.



3.2 BLACKBODY RADIATION 73

measurements showed that u(f, T), the spectral energy density, was propor-
tional to T for long wavelengths or low frequency. Planck knew that Wien’s law
agreed well with the data at high frequency and indeed had been working
hard for several years to derive Wien’s exponential law from the principles of
statistical mechanics and Maxwell’s laws. Interpolating between the two limit-
ing forms (Wien’s exponential law and an energy density proportional to tem-
perature), he immediately found a general formula, which he sent to Rubens,
on a postcard, the same evening. His formula was®

8mhf? 1
u(f T) = ) (ehf/kBT_ 1 )

where % is Planck’s constant = 6.626 X 1073*J-s, and kg is Boltzmann’s
constant = 1.380 X 10_2?’]/K. We can see that Equation 3.9 has the correct
limiting behavior at high and low frequencies with the help of a few approxi-
mations. At high frequencies, where hf/kpT >> 1,

S S
M/ ksT — |

(3.9)

~ oW/ T

so that

W[ T) = 8ahf® < 1 )z 8772]”3 /T

¢ kT — c

and we recover Wien’s exponential law, Equation 3.8. At low frequencies,
where hf/ kT << 1,

1 1

W/kT — 1

‘ 1+
ke T

kpT
.

and

8arhy 1 8f”
ulfp 1) =—3 (ehf/kBT— 1>% s

This result shows that the spectral energy density is proportional to 7 in the
low-frequency or so-called classical region, as Rubens had found.

We should emphasize that Planck’s work entailed much more than clever
mathematical manipulation. For more than six years Planck (Fig. 3.8) labored to
find a rigorous derivation of the blackbody distribution curve. He was driven, in
his own words, by the fact that the emission problem “represents something
absolute, and since I had always regarded the search for the absolute as the lofti-
est goal of all scientific activity, I eagerly set to work.” This work was to occupy
most of his life as he strove to give his formula an ever deeper physical interpreta-
tion and to reconcile discrete quantum energies with classical theory.

. C 1
°Planck originally published his formula as u(A, T) = 1 < >, where C; = 8mch and

AP G2/ AT _
Co = hc/kp. He then found bestfit values to the experimental data for €} and Co and evaluated
h=1655x10"%]J-sand kg = Ny/R = 1.345 X 10”22 J/K. As R, the universal gas constant, was
fairly well known at the time, this technique also resulted in another method for finding Nj,
Avogadro’s number.
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Figure 3.8 Max Planck (1858-
1947). The work leading to the
“lucky” blackbody radiation for-
mula was described by Planck in
his Nobel prize acceptance
speech (1920): “But even if the
radiation formula proved to be
perfectly correct, it would after
all have been only an interpola-
tion formula found by lucky
guess-work and thus, would have
left us rather unsatisfied. I there-
fore strived from the day of its
discovery, to give it a real physi-
cal interpretation and this led
me to consider the relations be-
tween entropy and probability
according to Boltzmann’s ideas.
After some weeks of the most in-
tense work of my life, light be-
gan to appear to me and unex-
pected views revealed themselves
in the distance.” (AIP Niels Bohr
Library, W. I Meggers Collection)
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The Quantum of Energy

Planck’s original theoretical justification of Equation 3.9 is rather abstract
because it involves arguments based on entropy, statistical mechanics, and several
theorems proved earlier by Planck concerning matter and radiation in equilib-
rium.® We shall give arguments that are easier to visualize physically yet attempt
to convey the spirit and revolutionary impact of Planck’s original work.

Planck was convinced that blackbody radiation was produced by vibrating
submicroscopic electric charges, which he called resonators. He assumed that
the walls of a glowing cavity were composed of literally billions of these
resonators (whose exact nature was unknown at the time), all vibrating at
different frequencies. Hence, according to Maxwell, each oscillator should
emit radiation with a frequency corresponding to its vibration frequency. Also
according to classical Maxwellian theory, an oscillator of frequency f
could have any value of energy and could change its amplitude continu-
ously as it radiated any fraction of its energy. This is where Planck made
his revolutionary proposal. To secure agreement with experiment, Planck
had to assume that the total energy of a resonator with mechanical
frequency f could only be an integral multiple of hf or

Bresomatior = nhf = 1,2,8; c0o0 (3.10)

where % is a fundamental constant of quantum physics, 2 = 6.626 X 10734 ] -5,
known as Planck’s constant. In addition, he concluded that emission of radiation
of frequency f occurred when a resonator dropped to the next lowest energy
state. Thus the resonator can change its energy only by the difference AE according to

AE = hf (8.11)

That s, it cannot lose just any amount of its total energy, but only a finite amount, hf,
the so-called quantum of energy. Figure 3.9 shows the quantized energy levels and
allowed transitions proposed by Planck.

to m=oo

E n

4hf 4

3hf 3
>
&)

% hf 1
Z
=

0 0

Figure 3.9 Allowed energy levels according to Planck’s original hypothesis for an
oscillator with frequency /. Allowed transitions are indicated by the double-headed arrows.

SM. Planck, Ann. Physik, 4:553, 1901.
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EXAMPLE 3.2 A Quantum Oscillator versus a
Classical Oscillator

Consider the implications of Planck’s conjecture that all
oscillating systems of natural frequency f have discrete
allowed energies I = nhfand that the smallest change in
energy of the system is given by AE = Af.

(a) First compare an atomic oscillator sending out
540-nm light (green) to one sending out 700-nm light
(red) by calculating the minimum energy change of
each. For the green quantum,

Mbgeen = 1 = 5
(663 X 1073]-5)(3.00 X 108 m/s)
B 540 X 10~ 9 m
=368 X 107]

Actually, the joule is much too large a unit of energy
for describing atomic processes; a more appropriate unit
of energy is the electron volt (eV). The electron volt
takes the charge on the electron as its unit of charge. By
definition, an electron accelerated through a potential
difference of 1 volt has an energy of 1 eV. An electron
volt may be converted to joules by noting that

E=V-g=1eV= (1602 X 10719 C)(1]/C)
=1.602 X 10719]

It is also useful to have expressions for A and k¢ in terms
of electron volts. These are

h=413%6 X 10715 eV-s
he=1.240 X 107%eV-m = 1240 eV nm

Returning to our example, we see that the minimum
energy change of an atomic oscillator sending out green
light is

3.68 X 10719]
1.602 X 10719 ]/eV

AEgeen = =230 eV

For the red quantum the minimum energy change is
N “he _ (6.63 X 107 ]+5)(3.00 X 10° m/s)
red ) 700 X 109 m
=284 X 10719]=177¢eV

Note that the minimum allowed amount or “quantum”
of energy is not uniform under all conditions as is the
quantum of charge—the quantum of energy is propor-
tional to the natural frequency of the oscillator. Note,
too, that the high frequency of atomic oscillators
produces a measurable quantum of energy of several
electron volts.

(b) Now consider a pendulum undergoing small oscil-
lations with length € = 1 m. According to classical the-
ory, if air friction is present, the amplitude of swing and
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consequently the energy decrease continuously with time,
as shown in Figure 3.10a. Actually, all systems vibrating
with frequency f are quantized (according to Equation
3.10) and lose energy in discrete packets or quanta, hf.
This would lead to a decrease of the pendulum’s energy
in a stepwise manner, as shown in Figure 3.10b. We shall
show that there is no contradiction between quantum
theory and the observed behavior of laboratory pendu-
lums and springs.
An energy change of one quantum corresponds to

AE = hf

where the pendulum frequency fis

1
f=— % ~ 0.50 Hz

Thus,

AE = (6.63 X 10734 ]-5)(0.50 s~ 1)
=33 X 107%]
=21x10"%ev

Energy

TiMeE m—
(b)

Figure 3.10 (Example 3.2) (a) Observed classical be-
havior of a pendulum. (b) Predicted quantum behavior
of a pendulum.
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Because the total energy of a pendulum of mass m and AE 3.3 X 10*34J
1 1 T T 5. = 2.2 X 10_32
length ¢ displaced through an angle 6 is I3 1.5 X 1072]

E = mg{(1l — cos )

Note that the energy quantization of large vibrating

we have for a typical pendulum with m=100g, € = systems is unobservable because of their low frequencies

1.0m, and 6 = 10°,

E = (0.10 kg) (9.8 m/s%) (1.0 m) (1 — cos 10°) = 0.015 |

compared to the high frequencies of atomic oscillators.
Hence there is no contradiction between Planck’s
quantum postulate and the behavior of macroscopic

Therefore, the fractional change in energy, AE/E, is un- oscillators.

observably small:

Exercise 2 Calculate the quantum number, 7, for this pendulum with £ = 1.5 X 1072].

Answer 4.6 X 103!

Exercise 3 An object of mass m on a spring of stiffness k oscillates with an amplitude A
about its equilibrium position. Suppose that m = 300 g, k = 10 N/m, and A = 10 cm. (a)
Find the total energy. (b) Find the mechanical frequency of vibration of the mass. (c) Cal-
culate the change in amplitude when the system loses one quantum of energy.

Answer (a) i = 0.050 J; (b) f= 0.92 Hz; (¢) AEquanwum = 6.1 X 1073 ], s0

AE
A~ ——=-61X%X10"3m

N2Ek

Until now we have been concentrating on the remarkable quantum proper-
ties of single oscillators of frequency /. Planck explained the continuous spec-
trum of the blackbody by assuming that the heated walls contained resonators
vibrating at many different frequencies, each emitting light at the same fre-
quency as its vibration frequency. By considering the conditions leading to
equilibrium between the wall resonators and the radiation in the blackbody
cavity, he was able to show that the spectral energy density u(f, T) could be
expressed as the product of the number of oscillators having frequency
between fand f+ df, denoted by N(f) df, and the average energy emitted per
oscillator, E. Thus we have the important result

u(f, T) df = EN(f)df (3.12)
Furthermore, Planck showed that the number of oscillators with frequency
between fand f+ dfwas proportional to f% or

82

N(f) df= =5 df (3.13)

(See Appendix 1 on our book Web site at http:/info.brookscole.com/mp3e
for details.)
Substituting Equation 3.13 into Equation 3.12 gives

— 87f?
W Ty df=E —5—df (8.14)
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3.3 THE RAYLEIGH-JEANS LAW AND PLANCK’S LAW

This result shows that the spectral energy density is proportional to the
product of the frequency squared and the average oscillator energy. Also,
since u( f; T') approaches zero at high frequencies (see Fig. 3.5), E must tend
to zero at high frequencies faster than 1/f2. The fact that the mean oscillator
energy must become extremely small when the frequency becomes high
guided Planck in the development of his theory. In the next section we shall
see that the failure of E to become small at high frequencies in the classical
Rayleigh—Jeans theory led to the “ultraviolet catastrophe” —the prediction of
an infinite spectral energy density at high frequencies in the ultraviolet region.

3.3 THE RAYLEIGH-JEANS LAW AND PLANCK’S LAW

Rayleigh-Jeans Law

Both Planck’s law and the Rayleigh—Jeans law (the classical theory of blackbody
radiation formulated by Lord Rayleigh, John William Strutt, 1842-1919, English
physicist, and James Jeans, 1887-1946, English astronomer and physicist) may be
derived using the idea that the blackbody radiation energy per unit volume with fre-
quency between fand [+ df can be expressed as the product of the number of oscil-
lators per unit volume in this frequency range and the average energy per oscillator:

w(f, TYdf = EN(f)df (3.12)

It is instructive to perform both the Rayleigh—Jeans and Planck calculations to see
the effect on u(f, T) of calculating E from a continuous distribution of classical
oscillator energies (Rayleigh—]Jeans) as opposed to a discrete set of quantum oscilla-
tor energies (Planck). We discuss Lord Rayleigh’s derivation first because it is a
more direct classical calculation.

While Planck concentrated on the thermal equilibrium of cavity radiation with oscillating
electric charges in the cavity walls, Rayleigh concentrated divectly on the electromagnetic waves
in the cavity. Rayleigh and Jeans reasoned that the standing electromagnetic waves in
the cavity could be considered to have a temperature 7, because they constantly ex-
changed energy with the walls and caused a thermometer within the cavity to reach
the same temperature as the walls. Further, they considered a standing polarized
electromagnetic wave to be equivalent to a one-dimensional oscillator (Fig. 3.11).
Using the same general idea as Planck, they expressed the energy density as a prod-
uct of the number of standing waves (oscillators) and the average energy per oscilla-
tor. They found the average oscillator energy E to be independent of frequency and
equal to kg7 from the Maxwell-Boltzmann distribution law (see Chapter 10).
According to this distribution law, the probability P of finding an individual system
(such as a molecule or an atomic oscillator) with energy E above some minimum
energy, Ly, in a large group of systems at temperature 7'is

P(E) = Pye~E=E0)/ksT (3.15)

where P is the probability that a system has the minimum energy. In the case of a
discrele set of allowed energies, the average energy, I, is given by

SE-P(E)

E==5pm

(3.16)

where division by the sum in the denominator serves to normalize the total

probability to 1. In the classical case considered by Rayleigh, an oscillator could have any

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.

O PTIONA AL

77



78 CHAPTER 3 THE QUANTUM THEORY OF LIGHT

Density of standing waves in
a cavity

Rayleigh-]Jeans blackbody
law

il
<]

Figure 3.11 A one-dimensional harmonic oscillator is equivalent to a plane-
polarized electromagnetic standing wave.

energy £ in a continuous range from 0 to . Thus the sums in Equation 3.16 must
be replaced with integrals, and the expression for £ becomes

f Ee E/hTdE
0

E="0— = T
f o E/T g
0

The calculation of N(f) is a bit more complicated but is of importance here as
well as in the free electron model of metals. Appendix 1 on our Web site gives the
derivation of the density of modes, N( /) df. One finds

8rf?
N(f)df = 65 af (3.45)
or in terms of wavelength,
8
N(A)YdA = )\_Z A (3.46)

The spectral energy density is simply the density of modes multiplied by kg7, or

872
w(f TYdf = 77{ kp T df (3.17)
E
In terms of wavelength,
8w
u(h, TYdA =~ kp T dA (3.18)

However, as one can see from Figure 3.12, this classical expression, known as the
Rayleigh—Jeans law, does not agree with the experimental results in the short
wavelength region. Equation 3.18 diverges as A — 0, predicting unlimited energy
emission in the ultraviolet region, which was dubbed the “ultraviolet catastro-
phe.” One is forced to conclude that classical theory fails miserably to explain
blackbody radiation.
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3.3 THE RAYLEIGH-JEANS LAW AND PLANCK’S LAW

Rayleigh—

Jeans Law

Spectral energy density in
arbitrary units

[ ]
Lol | |
012345 67 89101112

Wavelength (um)

Figure 3.12 The failure of the classical Rayleigh—Jeans law (Equation 3.18) to fit
the observed spectrum of a blackbody heated to 1000 K.

Planck’s Law

As mentioned earlier, Planck concentrated on the energy states of resonators in the
cavity walls and used the condition that the resonators and cavity radiation were in-
equilibrium to determine the spectral quality of the radiation. By thermodynamic
reasoning (and apparently unaware of Rayleigh’s derivation), he arrived at the same
expression for N(f) as Rayleigh. However, Planck arrived at a different form for E
by allowing only discrete values of energy for his resonators. He found, using the
Maxwell-Boltzmann distribution law,

— hf
(Sej: the book Web site at http://info.brookscole.com/mp3e for Planck’s derivation
of E.)

Multiplying E by N(f) gives the Planck distribution formula:

_ 8af? hf
u(f, T)df = 3 <€h//kBT 1 df (3.9)
or in terms of wavelength, A,
87rhe d\
(A, TYdA = —— (3.20)

AB(ehc/)\kBT _ 1)

Equation 3.9 shows that the ultraviolet catastrophe is avoided because the E term dom-
inates the /2 term at high frequencies. One can qualitatively understand why E tends to
zero at high frequencies by noting that the first allowed oscillator level (Af) is so large
for large fcompared to the average thermal energy available (kg7') that Boltzmann’s
law predicts almost zero probability that the first excited state is occupied.

In summary, Planck arrived at his blackbody formula by making two startling
assumptions: (1) the energy of a charged oscillator of frequency fis limited to
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discrete values nhfand (2) during emission or absorption of light, the change in
energy of an oscillator is hf. But Planck was every bit the “unwilling revolution-
ary.” From most of Planck’s early correspondence one gets the impression that
his concept of energy quantization was really a desperate calculational device,
and moreover a device that applied only in the case of blackbody radiation. It
remained for the great Albert Einstein, the popular icon of physics in the 20th
century, to elevate quantization to the level of a universal phenomenon by show-

EXAMPLE 3.3 Derivation of Stefan’s Law from
the Planck Distribution

In this example, we show that the Planck spectral distri-
bution formula leads to the experimentally observed
Stefan law for the total radiation emitted by a blackbody
at all wavelengths,

Crotal = 5.67 X 1078 T4 W-m™2-K™*

Solution Since Stefan’s law is an expression for the to-
tal power per unit area radiated at all wavelengths, we
must integrate the expression for u(A, T) dA given by
Equation 3.20 over A and use Equation 3.7 for the con-
nection between the energy density inside the blackbody
cavity and the power emitted per unit area of blackbody
surface. We find

e [ (" 2arhe?
Ctotal — X o u(A, T)dr = 0 )\B(ehr:/)\kBT_ 1) dx

ing that light itself was quantized.

If we make the change of variable x = hc¢/AkpT, the inte-
gral assumes a form commonly found in tables:

Qmhy T4 f“ x®
o (

Cotal — 25 o — 1) dx
Using
Jm 4963 dx = 7T—4
o (e*—1) 15
we find
2k T4 — ot

Ciotal = 15255

Finally, substituting for kg, ¢, and 4, we have

_ (2)(8.141)%(1.381 X 10~ 22 J/K)*
77 7(15) (2,998 X 105 m/s)? (6.626 X 101 ]-5)

=5.67%X1078W-m~2- K¢

Exercise 4 Show that

27he?

dA

J:) AB(ehc//\kBT - 1) - 132

2mhpT* [~ X
_ TRB J X dx

=0 (= 1)

3.4 LIGHT QUANTIZATION AND THE
PHOTOELECTRIC EFFECT

We now turn to the year 1905, in which the next major development in
quantum theory took place. The year 1905 was an incredible one for the
“willing revolutionary” Albert Einstein (Fig. 3.13). In this year Einstein pro-
duced three immortal papers on three different topics, each revolutionary
and each worthy of a Nobel prize. All three papers contained balanced,
symmetric, and unifying new results achieved by spare and clean logic and
simple mathematics. The first work, entitled “A Heuristic’ Point of View

7A heuristic argument is one that is plausible and enlightening but not rigorously justified.
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About the Generation and Transformation of Light,” formulated the theory

of light quanta and explained the photoelectric effect.® The second paper

was entitled “On the Motion of Particles Suspended in Liquids as Required

by the Molecular-Kinetic Theory of Heat.” It explained Brownian motion

and provided strong proof of the reality of atoms.? The third paper, which

is perhaps his most famous, contained the invention of the theory of special

relativity!® and was entitled “On the Electrodynamics of Moving Bodies.” It

is interesting to note that when Einstein was awarded the Nobel prize in

1922, the Swedish Academy judged his greatest contribution to physics to

have been the theory of the photoelectric effect. No mention was made at ) ) o
all of his theory of relativity! Image not available due to copyright restrictions

Let us turn now to the paper concerning the light quantum, in which
Einstein crossed swords with Maxwell and challenged the unqualified
successes of the classical wave theory of light. Einstein recognized an incon-
sistency between Planck’s quantization of oscillators in the walls of the
blackbody and Planck’s insistence that the cavity radiation consisted of clas-
sical electromagnetic waves. By showing that the change in entropy of black-
body radiation was like the change in entropy of an ideal gas consisting of
independent particles, Einstein reached the conclusion that light itself is
composed of “grains,” irreducible finite amounts, or quanta of energy.'!
Furthermore, he asserted that light interacting with matter also consists of
quanta, and he worked out the implications <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>